Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700010

ABSTRACT

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Subject(s)
Antibiotics, Antineoplastic , Carbon Monoxide , Cardiotoxicity , Doxorubicin , Membrane Proteins , Animals , Doxorubicin/toxicity , Carbon Monoxide/metabolism , Antibiotics, Antineoplastic/toxicity , Female , Administration, Oral , Mice , Heme Oxygenase-1/metabolism , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Heart Diseases/metabolism , Heart Diseases/pathology , Disease Models, Animal , Mice, Inbred C57BL , Carboxyhemoglobin/metabolism , Ventricular Function, Left/drug effects , Humans
2.
J Leukoc Biol ; 114(5): 459-474, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37566762

ABSTRACT

Cytomegalovirus (CMV) is a ubiquitous herpes virus that infects most humans, thereafter persisting lifelong in tissues of the host. It is a known pathogen in immunosuppressed patients, but its impact on immunocompetent hosts remains less understood. Recent data have shown that CMV leaves a significant and long-lasting imprint in host immunity that may confer some protection against subsequent bacterial infection. Such innate immune activation may come at a cost, however, with potential to cause immunopathology. Neutrophils are central to many models of immunopathology, and while acute CMV infection is known to influence neutrophil biology, the impact of chronic CMV infection on neutrophil function remains unreported. Using our murine model of CMV infection and latency, we show that chronic CMV causes persistent enhancement of neutrophil oxidative burst well after resolution of acute infection. Moreover, this in vivo priming of marrow neutrophils is associated with enhanced formyl peptide receptor expression, and ultimately constitutive c-Jun N-terminal kinase phosphorylation and enhanced CD14 expression in/on circulating neutrophils. Finally, we show that neutrophil priming is dependent on viral load, suggesting that naturally infected human hosts will show variability in CMV-related neutrophil priming. Altogether, these findings represent a previously unrecognized and potentially important impact of chronic CMV infection on neutrophil responsiveness in immunocompetent hosts.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Animals , Mice , Neutrophils , Respiratory Burst
3.
Diagnostics (Basel) ; 13(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37568846

ABSTRACT

This study aimed to quantify serum C-reactive protein (CRP) values in periodontally healthy people and explore the relationship between serum CRP levels and chronic periodontitis, and the influence of scaling as well as root planing (SRP) on serum CRP levels. The study included 100 systemically healthy adults (n = 100; 50 males and 50 females) who were separated into two groups: Group A (control) n = 50; periodontally healthy subjects and Group B (test) n = 50; subjects with chronic periodontitis. The test group (group B) was further separated randomly into two groups: B1 (n = 25) and B2 (n = 25). The clinical parameters and serum CRP levels were measured only once in Group A and before SRP in Group B1 subjects. In Group B2 subjects the clinical parameters and serum CRP levels were measured only after two months following SRP. For group A, B1, and B2 (the readings recorded after SRP) the mean gingival index scores were 0.146, 2.437, and 1.052, respectively, while the plaque index was 0.414, 2.499, and 0.954, respectively. Probing pocket depth (PPD) and clinical attachment loss (CAL) showed statistically significant differences between three groups, with higher values in patients with periodontitis before intervention (2.196 ± 0.49; 1.490 ± 0.23), respectively. Healthy controls (Group A) had a C-reactive protein level of 0.04820 mg/dL, while group B1 (test) had 1.678 mg/dL and 0.8892 mg/dL (group B2). C-reactive protein levels were observed to be greater in the test group (groups B1 and B2), and these differences were statistically significant (p < 0.001). Chronic periodontitis enhances blood levels of systemic inflammatory markers like CRP, which has been reduced by periodontal treatment with SRP.

4.
Ann Surg ; 278(6): e1277-e1288, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37154066

ABSTRACT

OBJECTIVE: Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND: Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS: We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS: Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS: Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.


Subject(s)
Anti-Infective Agents , Neutrophils , Humans , Mice , Animals , Neutrophils/metabolism , Actins/metabolism , Toll-Like Receptor 9/metabolism , DNA, Mitochondrial/metabolism , Peptides/metabolism , Heme/metabolism
5.
Sci Transl Med ; 14(651): eabl4135, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35767653

ABSTRACT

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Carbon Monoxide/therapeutic use , Colitis/drug therapy , Gases , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy , Swine
6.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34520397

ABSTRACT

Infection is a common complication of major trauma that causes significantly increased morbidity and mortality. The mechanisms, however, linking tissue injury to increased susceptibility to infection remain poorly understood. To study this relationship, we present a potentially novel murine model in which a major liver crush injury is followed by bacterial inoculation into the lung. We find that such tissue trauma both impaired bacterial clearance and was associated with significant elevations in plasma heme levels. While neutrophil (PMN) recruitment to the lung in response to Staphylococcus aureus was unchanged after trauma, PMN cleared bacteria poorly. Moreover, PMN show > 50% less expression of TLR2, which is responsible, in part, for bacterial recognition. Administration of heme effectively substituted for trauma. Finally, day 1 trauma patients (n = 9) showed similar elevations in free heme compared with that seen after murine liver injury, and circulating PMN showed similar TLR2 reduction compared with volunteers (n = 6). These findings correlate to high infection rates.


Subject(s)
Bacterial Infections/physiopathology , Heme/metabolism , Hemorrhage/complications , Wounds and Injuries/complications , Adolescent , Adult , Aged , Animals , Case-Control Studies , Female , Humans , Male , Mice , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...