Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Gastroenterol ; 42(6): 800-807, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589914

ABSTRACT

BACKGROUND: Genetic and epigenetic factors are associated with the development of alcohol-associated liver disease (AALD). The single nucleotide polymorphisms (SNPs), rs738409 in Patatin-like phospholipase domain-containing protein (PNPLA3) and rs58542926 in Transmembrane 6 Superfamily Member 2 (TM6SF2) are strongly associated with AALD in different global populations, Hence, we analyzed the genetic risk score for these variants and deoxyribonucleic acid (DNA) methylation levels of the PNPLA3 and TM6SF2 genes among cases (alcohol liver cirrhosis) and controls (heavy drinkers without cirrhosis). METHOD: We studied patients with alcohol use disorder (AUD) with cirrhosis (AUD-C + ve, n = 136) and without cirrhosis (AUD-C-ve, n = 107) drawn from the clinical services of St. John's Medical College Hospital (SJMCH) (Gastroenterology and Psychiatry) and Centre for Addiction Medicine (CAM), National Institute of Mental Health and Neurosciences, (NIMHANS). Genotype data was generated for rs738409 (PNPLA3) and rs58542926 (TM6SF2) and used to calculate unweighted genetic risk score (uGRS) and weighted genetic risk scores (wGRS). DNA methylation levels were estimated by pyrosequencing at PNPLA3 and TM6SF2 loci. RESULTS: Overall we observed a significantly higher genetic risk score (weighted genetic risk score, wGRS) in individuals with alcohol use disorder compared to control population (p = < 0.01). Further, uGRS and wGRS were associated with the diagnosis of cirrhosis, even after correcting for age of onset, quantity and frequency of drinking. We also found hypomethylation at CpG2 of TM6SF2 gene in AUD-C + ve compared to AUD-C-ve (P = 0.02). CONCLUSION: We found that a genetic risk score based on SNPs in the PNPLA3 and TM6SF2 genes was significantly associated with cirrhosis in patients with AUD, suggesting a potential utility in identifying patients at risk and providing pre-emptive interventions. These may include interventions that aim to alter DNA methylation, which may be one of the mechanisms through which elevated genetic risk may influence the development of cirrhosis.


Subject(s)
Alcoholism , Non-alcoholic Fatty Liver Disease , Humans , Alcoholism/complications , Alcoholism/genetics , DNA Methylation , Liver Cirrhosis, Alcoholic/genetics , Liver Cirrhosis, Alcoholic/complications , Liver Cirrhosis/complications , Genotype , Fibrosis , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Non-alcoholic Fatty Liver Disease/complications , Membrane Proteins/genetics
2.
DNA Cell Biol ; 42(7): 364-371, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37367217

ABSTRACT

Alcohol use disorder (AUD) and cirrhosis are key outcomes of excessive alcohol use, and a genetic influence in these outcomes is increasingly recognized. While 80-90% of heavy alcohol users show evidence of fatty liver, only 10-20% progress to cirrhosis. There is currently no clear understanding of the causes of this difference in progression. The aim of this study is to evaluate genetics and epigenetics at the aldehyde dehydrogenase (ALDH2) locus in patients with AUD and liver complications. Study participants were inpatients from the clinical services of Gastroenterology and Psychiatry at St. John's Medical College Hospital (SJMCH) and the National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India. Men diagnosed as having AUD with cirrhosis (AUDC+ve, N = 136) and AUD without cirrhosis (AUDC-ve, N = 107) were assessed. FibroScan/sonographic evidence was used to rule out fibrosis in the AUDC-ve group. Genomic DNA was used for genotyping at the ALDH2 (rs2238151) locus. A subset of 89 samples was used for DNA methylation (AUDC+ve, N = 44; and AUDC-ve, N = 45) analysis at long interspersed nucleotide element 1 (LINE-1) and ALDH2 cytosine-phosphate-guanine (CpG) loci by pyrosequencing. ALDH2 DNA methylation was significantly lower in the AUDC+ve group compared with the AUDC-ve group (p < 0.001). Lower methylation was associated with a risk allele (T) of the ALDH2 locus (rs2238151) (p = 0.01). Global (LINE-1) DNA methylation levels were also significantly lower in the AUDC+ve group compared with the AUDC-ve group (p = 0.01). Compromised global methylation (LINE-1) and hypomethylation at the ALDH2 gene was observed in patients with cirrhosis compared with those without cirrhosis. DNA methylation could be explored as a biomarker for cirrhosis and liver complications.


Subject(s)
Alcoholism , Aldehyde Dehydrogenase , Male , Humans , Aldehyde Dehydrogenase/genetics , Alcoholism/complications , Alcoholism/genetics , DNA Methylation , Long Interspersed Nucleotide Elements , Polymorphism, Genetic , India , Aldehyde Dehydrogenase, Mitochondrial/genetics , Liver Cirrhosis/genetics
3.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 183-192, 2021 04.
Article in English | MEDLINE | ID: mdl-33491855

ABSTRACT

Treatment strategies for alcohol use disorder (AUD) aim for abstinence or harm reduction. While deranged biochemical parameters reverse with alcohol abstinence, whether molecular changes at the epigenetic level reverse is not clearly understood. We investigated whether the reduction from high alcohol use reflects DNA methylation at the gene-specific and global level. In subjects seeking treatment for severe AUD, we assessed gene-specific (aldehyde dehydrogenase [ALDH2]/methylene tetrahydrofolate reductase [MTHFR]) and global (long interspersed elements [LINE-1]) methylation across three-time points (baseline, after detoxification and at an early remission period of 3 months), in peripheral blood leukocytes. We observed that both gene-specific and global DNA methylation did not change over time, irrespective of the drinking status at 3 months (52% abstained from alcohol). Further, we also compared DNA methylation in AUD subjects with healthy controls. At baseline, there was a significantly higher gene-specific DNA methylation (ALDH2: p < .001 and MTHFR: p = .001) and a significant lower global methylation (LINE-1: p = .014) in AUD as compared to controls. Our results suggest that epigenetic changes at the DNA methylation level associated with severe AUD persist for at least 3 months of treatment.


Subject(s)
Alcoholism/genetics , Alcoholism/pathology , Aldehyde Dehydrogenase, Mitochondrial/genetics , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Adult , Follow-Up Studies , Humans , Longitudinal Studies , Male , Young Adult
4.
Article in English | MEDLINE | ID: mdl-31082414

ABSTRACT

BACKGROUND: Children of parents with alcoholism face considerable stress, and often have externalizing behaviors. Early adversity is known to affect DNA methylation and the functioning of the HPA axis. We investigated the association of early adversity with cortisol reactivity, 5HTTLPR genotype, site specific DNA methylation in the SLC6A4 gene and externalizing behavior in children of alcoholics (COA), and a matched sample of control children. METHODS: We examined children of alcoholics (N = 50) and age matched control children (N = 50) for exposure to early adversity (both prenatal and postnatal), assessed their salivary cortisol reactivity and evaluated their levels of emotional and behavioral difficulty in terms of externalizing and internalizing behavior. Site-specific DNA methylation at a previously characterized SLC6A4 region was determined in salivary DNA using pyrosequencing. The 5HTTLPR region of the SLC6A4 gene was also genotyped. RESULTS: COA had significantly higher experience of early adversity than control children. Cortisol reactivity was reduced in COA, and negatively correlated with early adversity. Both early adversity and cortisol reactivity correlated with externalizing behavior. SLC6A4 methylation was higher in COA, and correlated with early adversity. SLC6A4 genotype did not show association with any of the variables. CONCLUSION: Our study provides further evidence that early adversity is associated with blunted cortisol reactivity, increased site-specific CpG DNA methylation at the SLC6A4 gene, and high externalizing behavior.


Subject(s)
Alcoholism , Child Abuse/psychology , Child of Impaired Parents/psychology , Hydrocortisone/metabolism , Internal-External Control , Serotonin Plasma Membrane Transport Proteins/metabolism , Adolescent , Case-Control Studies , Child , DNA Methylation , Genotype , Humans , Male , Polymorphism, Genetic/genetics , Saliva/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics
5.
J Neurochem ; 143(3): 334-358, 2017 11.
Article in English | MEDLINE | ID: mdl-28801915

ABSTRACT

Idiopathic Parkinson's disease and manganese-induced atypical parkinsonism are characterized by movement disorder and nigrostriatal pathology. Although clinical features, brain region involved and responsiveness to levodopa distinguish both, differences at the neuronal level are largely unknown. We studied the morphological, neurophysiological and molecular differences in dopaminergic neurons exposed to the Parkinson's disease toxin 1-methyl-4-phenylpyridinium ion (MPP+ ) and manganese (Mn), followed by validation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and Mn mouse models. Morphological analysis highlighted loss of neuronal processes in the MPP+ and not the Mn model. Cellular network dynamics of dopaminergic neurons characterized by spike frequency and inter-spike intervals indicated major neuronal population (~ 93%) with slow discharge rates (0-5 Hz). While MPP+ exposure suppressed the firing of these neurons, Mn neither suppressed nor elevated the neuronal activity. High-throughput transcriptomic analysis revealed up-regulation of 694 and 603 genes and down-regulation of 428 and 255 genes in the MPP+ and Mn models respectively. Many differentially expressed genes were unique to either models and contributed to neuroinflammation, metabolic/mitochondrial function, apoptosis and nuclear function, synaptic plasticity, neurotransmission and cytoskeleton. Analysis of the Janus kinase-signal transducer and activator of transcription pathway with implications for neuritogenesis and neuronal proliferation revealed contrasting profile in both models. Genome-wide DNA methylomics revealed differences between both models and substantiated the epigenetic basis of the difference in the Janus kinase-signal transducer and activator of transcription pathway. We conclude that idiopathic Parkinson's disease and atypical parkinsonism have divergent neurotoxicological manifestation at the dopaminergic neuronal level with implications for pathobiology and evolution of novel therapeutics. Cover Image for this issue: doi. 10.1111/jnc.13821.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Dopaminergic Neurons/drug effects , Gene Expression Regulation/drug effects , Manganese/toxicity , Neurotoxins/toxicity , Action Potentials/drug effects , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Cell Line, Transformed , Cell Survival/drug effects , DNA Methylation/drug effects , Dopaminergic Neurons/cytology , Dopaminergic Neurons/ultrastructure , L-Lactate Dehydrogenase/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Neural Networks, Computer , Rats , Signal Transduction/drug effects , Transcriptome/drug effects , Transcriptome/physiology , Tyrosine 3-Monooxygenase/metabolism
6.
Asian J Psychiatr ; 27: 7-11, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28558900

ABSTRACT

OBJECTIVES: To study the association of apolipoprotein E (APOE), Clusterin (CLU) and phosphatidylinositol binding clathrin assembly protein (PICALM) polymorphisms in Alzheimer's disease (AD) subjects compared to cognitively normal control subjects in an Indian population. METHODS: The study subjects included persons with AD (N=243) and age group matched healthy controls (N=164). All the AD subjects were evaluated using a standard protocol. DNA was isolated from whole blood. APOE (rs7412, rs429358), CLU (rs11136000) and PICALM (rs3851179) were genotyped. General linear model was used to test the association between the individual risk genotypes and AD. RESULTS: The presence of APOE ε4 was associated with AD after adjusting for age and gender (p<0.0001). There was no association observed with AD at both rs11136000 CLU (p=0.25) and rs3851179 PICALM (p=0.54). CONCLUSION: Our results confirmed a significant association of APOE ε4 carrier status with AD. No association was observed for CLU and PICALM with AD. This might be due to a different genetic background. There are no previous reports of these polymorphisms in an Indian cohort. Future Indian AD studies should investigate additional SNPs in a larger sample size in these genes.


Subject(s)
Alzheimer Disease/genetics , Clusterin/genetics , Monomeric Clathrin Assembly Proteins/genetics , Aged , Apolipoprotein E4/genetics , Female , Humans , India , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk
7.
Int J Alzheimers Dis ; 2012: 702972, 2012.
Article in English | MEDLINE | ID: mdl-22701197

ABSTRACT

Objective. To evaluate the association of Apolipoprotein E4 (ApoE4) in Alzheimer's dementia (AD) with comorbid diabetes mellitus (DM). Methods. The study included subjects with Alzheimer's dementia (AD) (n = 209), individuals with non-Alzheimer's dementia (nAD) (n = 122), individuals with parental history of AD (f/hAD) (n = 70), and control individuals who had normal cognitive functions and no parental history of dementia (NC) (n = 193). Dementia was diagnosed using International Classification of Diseases-10 revision (ICD-10) criteria. DM was assessed on the basis of self-report and/or use of antidiabetic medications. ApoE genotyping was done using sequence-specific primer polymerase chain reaction. Results. ApoE4 allele frequencies were highest among AD with comorbid DM (0.35) followed by AD without DM (0.25), nAD with DM (0.13), nAD without comorbid DM (0.12), and NC (0.08). Frequency of ApoE4 in persons with f/hAD was 0.13. The association of AD with co-morbid DM in ApoE4 carriers was more in comparison to NC with DM (OR = 5.68, P = 0.04). Conclusion. There is a significant association between AD with co-morbid DM and ApoE4 genotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...