Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(19): 9977-9986, 2023 11.
Article in English | MEDLINE | ID: mdl-36437795

ABSTRACT

Human telomeric DNA can fold into G-quadruplex structures involving the interaction of four guanine bases in a square planar arrangement. The highly distinctive nature of quadruplex topologies suggests that they can act as novel therapeutic targets. In this study, we provide the evidence of human telomeric G4 destabilization in dilute and cell-mimicking molecular crowing conditions upon peptide binding. We have used three human telomeric sequences of different lengths. CD data showed that these sequences folded into anti-parallel G-quadruplex and CD intensity decreased significantly on increasing the peptide concentration. UV-thermal melting results showed significant decrease in hypochromicity due to formation of G4-peptide complex at 295 nm. Fluorescence data showed the quenching on titrating the peptide with human telomere G4. Electrophoretic mobility shift assay confirmed the unfolding of G4 structure. Cell viability was significantly reduced in the presence of QW5 peptide with IC50 values as 8.78 µM and 7.72 µM after 72 and 96 hours of incubation respectively. These results confirmed that QW5 peptide has an ability to bind and unfold to human telomeric G-quadruplex and hence might be the key modulator for targeting diseases having over-representation of G4 motifs and their destabilization will be helpful in increasing the efficiency of DNA replication, transcription or duplex reannealing.Communicated by Ramaswamy H. Sarma.


Subject(s)
G-Quadruplexes , Humans , DNA/chemistry , DNA Replication , Base Sequence , Peptides/genetics , Telomere/genetics
2.
J Biomol Struct Dyn ; 41(15): 7119-7127, 2023.
Article in English | MEDLINE | ID: mdl-36038986

ABSTRACT

Human telomere is composed of highly repeated hexanucleotide sequence TTAGGG and a 3' single-stranded DNA tail. Many telomere G4 topologies characterized at atomic level by X-ray crystallography and NMR studies. Until now, various small ligands developed to interact with G-quadruplex mainly to stabilize the structure and least is known for its destabilization. In this study, we provide the first evidence of human telomeric G4 destabilization upon peptide binding in dilute and cell-mimicking molecular crowing conditions due to the changes in flanking bases of human telomeric sequences. Hence, our findings will open the new ways to target diseases related with increasing the efficiency of DNA replication, transcription or duplex reannealing.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 37(9): 2211-2218, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30047312

ABSTRACT

Formation of higher order structures, such as G-quadruplexes and G-quadruplex based large suprastructures into long G-wires and liquid crystals is promising elements for use in healthcare for drug delivery as they are mechanically and thermally stable. In this study, we studied the structures of short 11-mer oligonucleotide 5'-G2AG5AG2-3'(11Pu) which is observed in 3'-UTR region of c-jun protooncogene. We used circular dichroism, UV-thermal melting, native gel electrophoresis and atomic force microscopy to determine the structure of 11Pu. CD results showed that 11Pu formed a mixed G-quadruplex in the presence of Na+ with and without Mg2+, while it formed a parallel G-quadruplex in the presence of 100 mM K+ with or without Mg2+. Cation selectivity in inducing the formation of large superstructures was observed in the presence of 100 mM K+ with 10 mM Mg2+. On the contrary, 10 mM Ca2+ did not induce the suprastructures. It was further demonstrated that Mg2+ at low concentration induced a parallel G-quadruplex of 11Pu, whereas at 10 mM Mg2+ induced a large suprastructure. AFM Images showed that 11Pu formed a G-wire, a liquid crystals and a crystalline lattice depending on the concentration of 11Pu and Mg2+. These insights may be employed to design G quadruplex-based nanowires for targeted drug delivery as well as interesting candidates for molecular nanowires. Communicated by Ramaswamy H. Sarma.


Subject(s)
DNA/chemistry , G-Quadruplexes , Metals/chemistry , Oligonucleotides/chemistry , Base Sequence , Cations/chemistry , Circular Dichroism/methods , Microscopy, Atomic Force/methods , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oligonucleotides/genetics
4.
Biopolymers ; 107(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28295161

ABSTRACT

Most of the important genomic regions, especially the G,C rich gene promoters, consist of sequences with potential to form G,C-tetraplexes on both the DNA strands. In this study, we used three C-rich oligonucleotides (11Py, 21Py, and HTPy), of which 11Py and 21Py are located at various transcriptional regulatory elements of the human genome while HTPy sequence is a C-rich strand of human telomere sequence. These C-rich oligonucleotides formed i-motif structures, verified by Circular Dichroism (CD), UV absorption melting experiments, and native gel electrophoresis. The CD spectra revealed that 11Py and 21Py form i-motif structures at acidic pH values of 4.5 and 5.7 in the presence of 100 mM NaCl but remain unstructured at pH 7.0. However, 21Py can form stable i-motif structure even at neutral pH in presence of 1 mM MgCl2 . UV-thermal melting studies showed stabilization of 21Py i-motif at pH 5.7 in the presence of Na+ or K+ with increasing concentration of MgCl2 or CaCl2 from 1 to 10 mM. Significant shift in the CD peak of HTPy sequence was observed as the positive peak from 286 nm shifted to 276 nm while the negative peak from 265 to 254 nm. Further, inevitable necessity of 1 mM Mg2+ to form i-motif structure at neutral pH was observed. Under similar ionic conditions and neutral pH, all the three C-rich sequences were able to form stable i-motif structures (11Py, 21Py) or altered i-motif/homoduplex structures (HTPy) in the presence of MgCl2 and cell mimicking molecular crowding conditions of 40 wt% PEG 200. It is concluded that presence of Mg2+ ions and molecular crowding agents induce and stabilize i-motif structures at physiological solution environment.


Subject(s)
Magnesium/chemistry , Oligonucleotides/chemistry , Circular Dichroism , Hydrogen-Ion Concentration , Nucleic Acid Conformation , Phase Transition , Polyethylene Glycols/chemistry , Sodium Chloride/chemistry , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...