Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 590, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34002013

ABSTRACT

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.


Subject(s)
COVID-19/genetics , Computational Biology/methods , Host-Pathogen Interactions/genetics , Pandemics , SARS-CoV-2/genetics , Binding Sites , COVID-19/virology , Cytokines/genetics , Databases, Genetic , Gene Expression Regulation , Genome, Viral , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Seq , Serpins/genetics , Signal Transduction/genetics , Transcriptome , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...