Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(5): 736-748, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36549906

ABSTRACT

The estrous cycle is a potent modulator of neuron physiology. In rodents, in vivo ventral tegmental area (VTA) dopamine (DA) activity has been shown to fluctuate across the estrous cycle. Although the behavioral effect of fluctuating sex steroids on the reward circuit is well studied in response to drugs of abuse, few studies have focused on the molecular adaptations in the context of stress and motivated social behaviors. We hypothesized that estradiol fluctuations across the estrous cycle acts on the dopaminergic activity of the VTA to alter excitability and stress response. We used whole-cell slice electrophysiology of VTA DA neurons in naturally cycling, adult female C57BL/6J mice to characterize the effects of the estrous cycle and the role of 17ß-estradiol on neuronal activity. We show that the estrous phase alters the effect of 17ß-estradiol on excitability in the VTA. Behaviorally, the estrous phase during a series of acute variable social stressors modulates subsequent reward-related behaviors. Pharmacological inhibition of estrogen receptors in the VTA before stress during diestrus mimics the stress susceptibility found during estrus, whereas increased potassium channel activity in the VTA before stress reverses stress susceptibility found during estrus as assessed by social interaction behavior. This study identifies one possible potassium channel mechanism underlying the increased DA activity during estrus and reveals estrogen-dependent changes in neuronal function. Our findings demonstrate that the estrous cycle and estrogen signaling changes the physiology of DA neurons resulting in behavioral differences when the reward circuit is challenged with stress.SIGNIFICANCE STATEMENT The activity of the ventral tegmental area encodes signals of stress and reward. Dopaminergic activity has been found to be regulated by both local synaptic inputs as well as inputs from other brain regions. Here, we provide evidence that cycling sex steroids also play a role in modulating stress sensitivity of dopaminergic reward behavior. Specifically, we reveal a correlation of ionic activity with estrous phase, which influences the behavioral response to stress. These findings shed new light on how estrous cycle may influence dopaminergic activity primarily during times of stress perturbation.


Subject(s)
Dopaminergic Neurons , Estrous Cycle , Mice , Animals , Female , Mice, Inbred C57BL , Dopaminergic Neurons/physiology , Estrous Cycle/physiology , Estrogens/pharmacology , Estradiol/pharmacology , Social Behavior , Mesencephalon , Potassium Channels , Ventral Tegmental Area
2.
Curr Biol ; 29(3): 435-448.e8, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30661803

ABSTRACT

Age-related declines in cognitive fitness are associated with a reduction in autophagy, an intracellular lysosomal catabolic process that regulates protein homeostasis and organelle turnover. However, the functional significance of autophagy in regulating cognitive function and its decline during aging remains largely elusive. Here, we show that stimulating memory upregulates autophagy in the hippocampus. Using hippocampal injections of genetic and pharmacological modulators of autophagy, we find that inducing autophagy in hippocampal neurons is required to form novel memory by promoting activity-dependent structural and functional synaptic plasticity, including dendritic spine formation, neuronal facilitation, and long-term potentiation. We show that hippocampal autophagy activity is reduced during aging and that restoring its levels is sufficient to reverse age-related memory deficits. Moreover, we demonstrate that systemic administration of young plasma into aged mice rejuvenates memory in an autophagy-dependent manner, suggesting a prominent role for autophagy to favor the communication between systemic factors and neurons in fostering cognition. Among these youthful factors, we identify osteocalcin, a bone-derived molecule, as a direct hormonal inducer of hippocampal autophagy. Our results reveal that inducing autophagy in hippocampal neurons is a necessary mechanism to enhance the integration of novel stimulations of memory and to promote the influence of systemic factors on cognitive fitness. We also demonstrate the potential therapeutic benefits of modulating autophagy in the aged brain to counteract age-related cognitive impairments.


Subject(s)
Aging/physiology , Autophagy/physiology , Hippocampus/physiology , Memory Disorders , Memory/physiology , Animals , Autophagy/drug effects , Autophagy/genetics , Disease Models, Animal , Male , Memory/drug effects , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL
3.
Biochemistry ; 54(33): 5198-208, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26268594

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) and tau have been identified as risk factors of Parkinson's disease (PD). As LRRK2 is a kinase and tau is hyperphosphorylated in some LRRK2 mutation carriers of PD patients, the obvious hypothesis is that tau could be a substrate of LRRK2. Previous reports that LRRK2 phosphorylates free tau or tubulin-associated tau provide direct support for this proposition. By comparing LRRK2 with cdk5, we show that wild-type LRRK2 and the G2019S mutant phosphorylate free recombinant full-length tau protein with specific activity 480- and 250-fold lower than cdk5, respectively. More strikingly tau binds to wt LRRK2 or the G2019S mutant 140- or 200-fold more strongly than cdk5. The extremely low activity of LRRK2 but strong binding affinity with tau suggests that LRRK2 may facilitate tau phosphorylation as a scaffold protein rather than as a major tau kinase. This hypothesis is further supported by the observation that (i) cdk5 or tau coimmunoprecipitates with endogenous LRRK2 in SH-SY5Y cells, in mouse brain tissue, and in human PBMCs; (ii) knocking down endogenous LRRK2 by its siRNA in SH-SY5Y cells reduces tau phosphorylation at Ser396 and Ser404; (iii) inhibiting LRRK2 kinase activity by its inhibitors has no effect on tau phosphorylation at these two sites; and (iv) overexpressing wt LRRK2, the G2019S mutant, or the D1994A kinase-dead mutant in SH-SY5Y cells has no effect on tau phosphorylation. Our results suggest that LRRK2 facilitates tau phosphorylation indirectly by recruiting tau or cdk5 rather than by directly phosphorylating tau.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Protein Serine-Threonine Kinases/metabolism , tau Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Biocatalysis , Brain/metabolism , Cell Line, Tumor , Humans , Kinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Leukocytes, Mononuclear/metabolism , Mice , Molecular Sequence Data , Mutation , Parkinson Disease/genetics , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...