Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Redox Biol ; 34: 101574, 2020 07.
Article in English | MEDLINE | ID: mdl-32422539

ABSTRACT

PURPOSE: Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of visual disability and blindness in diabetic patients. Chronic hyperglycemia leads to increased oxidative stress and inflammation in the retina, resulting in microvascular damage. Our recent in vitro studies have demonstrated that inhibition of interleukin-6 (IL-6) trans-signaling significantly reduces oxidative stress in retinal endothelial cells. The purpose of this study was to further explore the relationship between IL-6 trans-signaling and oxidative stress using a streptozotocin (STZ) induced mouse model of early diabetic retinopathy. METHODS: Diabetes was induced in eight week-old male C57BL/6J mice using STZ injections. sgp130Fc (mouse sgp130Fc protein) treatment was used for inhibition of IL-6 trans-signaling. Studies were conducted to evaluate the effects of IL-6 trans-signaling on oxidative balance at the systemic and retinal level. RESULTS: Decreased antioxidant capacity and increased oxidative stress was observed in diabetic mice, which returned to near-normal levels with sgp130Fc treatment. Similarly, superoxide levels, lipid peroxidation, and markers of oxidative DNA damage were increased in the diabetic retina, and these effects were abrogated by sgp130Fc treatment. Inhibition of IL-6 trans-signaling also restored normal expression of catalase and endothelial nitric oxide synthase in mouse retinas. CONCLUSIONS: Inhibition of IL-6 trans-signaling significantly reduces diabetes-induced oxidative damage at the systemic level and in the retina. These findings provide further evidence for the role of IL-6 trans-signaling in diabetes-mediated oxidative stress.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Endothelial Cells/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Retina/metabolism
3.
Curr Eye Res ; 41(8): 1105-1112, 2016 08.
Article in English | MEDLINE | ID: mdl-26642738

ABSTRACT

PURPOSE: Sigma receptors 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1-/- mice. METHODS: Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild-type mouse retina. Tissues from σR1-/- mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. RESULTS: In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1-/- mice did not differ from wild-type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild-type and σR1-/- mice. In contrast, liver, brain, and intestine showed increased Pgrmc1 gene expression in σR1-/- mice. CONCLUSION: Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1-/- mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicates a possible tissue-specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function.


Subject(s)
Gene Expression Regulation , Membrane Proteins/genetics , RNA, Messenger/genetics , Receptors, Progesterone/genetics , Retinal Ganglion Cells/metabolism , Animals , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Immunoblotting , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Receptors, Progesterone/biosynthesis , Retinal Ganglion Cells/cytology , Reverse Transcriptase Polymerase Chain Reaction
4.
Free Radic Biol Med ; 86: 25-36, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25920363

ABSTRACT

Oxidative stress figures prominently in retinal diseases, including diabetic retinopathy, and glaucoma. Ligands for σ1R, a unique transmembrane protein localized to the endoplasmic reticulum, mitochondria, and nuclear and plasma membranes, have profound retinal neuroprotective properties in vitro and in vivo. Studies to determine the mechanism of σ1R-mediated retinal neuroprotection have focused mainly on neurons. Little is known about the effects of σ1R on Müller cell function, yet these radial glial cells are essential for homeostatic support of the retina. Here we investigated whether σ1R mediates the oxidative stress response of Müller cells using wild-type (WT) and σ1R-knockout (σ1RKO) mice. We observed increased endogenous reactive oxygen species (ROS) levels in σ1RKO Müller cells compared to WT, which was accompanied by decreased expression of Sod1, catalase, Nqo1, Hmox1, Gstm6, and Gpx1. The protein levels of SOD1, CAT, NQO1, and GPX1 were also significantly decreased. The genes encoding these antioxidants contain an antioxidant response element (ARE), which under stress is activated by NRF2, a transcription factor that typically resides in the cytoplasm bound by KEAP1. In the σ1RKO Müller cells Nrf2 expression was decreased significantly at the gene (and protein) level, whereas Keap1 gene (and protein) levels were markedly increased. NRF2-ARE binding affinity was decreased markedly in σ1RKO Müller cells. We investigated system xc(-), the cystine-glutamate exchanger important for synthesis of glutathione (GSH), and observed decreased function in σ1RKO Müller cells compared to WT as well as decreased GSH and GSH/GSSG ratios. This was accompanied by decreased gene and protein levels of xCT, the unique component of system xc(-). We conclude that Müller glial cells lacking σ1R manifest elevated ROS, perturbation of antioxidant balance, suppression of NRF2 signaling, and impaired function of system xc(-). The data suggest that the oxidative stress-mediating function of retinal Müller glial cells may be compromised in the absence of σ1R. The neuroprotective role of σ1R may be linked directly to the oxidative stress-mediating properties of supportive glial cells.


Subject(s)
Amino Acid Transport System y+/metabolism , Ependymoglial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Receptors, sigma/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antioxidant Response Elements , Cells, Cultured , Cytoskeletal Proteins/metabolism , Female , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1 , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Reactive Oxygen Species/metabolism , Signal Transduction , Transcriptional Activation , Sigma-1 Receptor
5.
J Neurochem ; 132(5): 546-58, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25439327

ABSTRACT

The high-affinity sigma receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here, we investigated whether lipopolysaccharide (LPS) stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor.


Subject(s)
Cytokines/metabolism , Ependymoglial Cells/metabolism , Inflammation/metabolism , Neuroprotective Agents/pharmacology , Pentazocine/pharmacology , Receptors, sigma/metabolism , Animals , Cell Movement , Enzyme-Linked Immunosorbent Assay , Ependymoglial Cells/drug effects , Ependymoglial Cells/immunology , Immunohistochemistry , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptors, sigma/immunology , Sigma-1 Receptor
6.
Cell Tissue Res ; 356(1): 15-27, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24469320

ABSTRACT

Sigma receptor 1 (σR1), a non-opiate transmembrane protein located on endoplasmic reticulum (ER) and mitochondrial membranes, is considered to be a molecular chaperone. Marked protection against cell death has been observed when ligands for σR1 have been used in in vitro and in vivo models of retinal cell death. Mice lacking σR1 (σR1(-/-)) manifest late-onset loss of retinal ganglion cells and retinal electrophysiological changes (after many months). The role of σR1 in the retina and the mechanisms by which its ligands afford neuroprotection are unclear. We therefore used σR1(-/-) mice to investigate the expression of ER stress genes (BiP/GRP78, Atf6, Atf4, Ire1α) and proteins involved in apoptosis (BCL2, BAX) and to examine the retinal transcriptome at young ages. Whereas no significant changes occurred in the expression of major ER stress genes (over a period of a year) in neural retina, marked changes were observed in these genes, especially Atf6, in isolated retinal Müller glial cells. BCL2 levels decreased in σR1(-/-) retina concomitantly with decreases in NFkB and pERK1/2. We postulate that σR1 regulates ER stress in retinal Müller cells and that the role of σR1 in retinal neuroprotection probably involves BCL2 and some of the proteins that modify its expression (such as ERK, NFκB). Data from the analysis of the retinal transcriptome of σR1 null mice provide new insights into the role of σR1 in retinal neuroprotection.


Subject(s)
Endoplasmic Reticulum Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, sigma/metabolism , Retina/metabolism , Animals , Blotting, Western , Brain/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Ependymoglial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Regulation , Heat-Shock Proteins , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, sigma/deficiency , Time Factors , Transcriptome/genetics , alpha-Crystallin B Chain/metabolism , bcl-2-Associated X Protein/metabolism , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...