Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Cureus ; 16(6): e61548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962586

ABSTRACT

INTRODUCTION: The present study aimed to evaluate and compare the anti-inflammatory effects of two oral rinse formulations, a commercial oral rinse and an Ocimum tenuiflorum and Ocimum gratissimum (nanocomposites, NCs) oral rinse, using in vitro assays commonly employed to assess anti-inflammatory activity. MATERIALS AND METHODS: The anti-inflammatory potential of the oral rinse formulations was assessed using bovine serum albumin (BSA) denaturation, egg albumin denaturation, and membrane stabilization assays. Diclofenac sodium was used as a reference standard in all assays. The inhibition percentages of BSA denaturation and egg albumin denaturation assays, as well as membrane stabilization effects, were measured at various concentrations of the oral rinse formulations. RESULTS: Both the commercial oral rinse and the Ocimum tenuiflorum and Ocimum gratissimum oral rinse demonstrated significant inhibition of BSA denaturation, indicating their anti-inflammatory potential. The Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse consistently showed higher inhibition percentages than the commercial oral rinse, suggesting stronger anti-inflammatory effects in this assay. In the egg albumin denaturation assay, both formulations exhibited inhibition of protein denaturation, with the Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse showing comparable or slightly higher inhibition percentages. The membrane stabilization assay further supported the anti-inflammatory properties of both formulations, with the Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse demonstrating efficacy comparable to diclofenac sodium. DISCUSSION: The results suggest that Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse may possess stronger anti-inflammatory effects compared to commercial oral rinse, as evidenced by higher inhibition percentages in the BSA denaturation assay. Both formulations showed promising anti-inflammatory activity in the egg albumin denaturation and membrane stabilization assays, indicating their potential for mitigating inflammation. CONCLUSION: The Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse exhibits significant anti-inflammatory effects in vitro, potentially surpassing the efficacy of the commercial oral rinse. Further studies are needed to explore the clinical implications of these findings and to validate the anti-inflammatory properties of the Ocimum tenuiflorum and Ocimum gratissimum (NCs) oral rinse in vivo.

2.
Cureus ; 16(5): e60354, 2024 May.
Article in English | MEDLINE | ID: mdl-38883127

ABSTRACT

Calotropis procera (C. procera) is a versatile plant often used for fuel, fodder, wood, fiber, phytoremediation, medicine, and synthesis of nanoparticles. Its ability to tolerate abiotic stresses and its morphophysiological adaptation have made it popular worldwide. Currently, it is identified as an environmental weed across the world. C. procera owes its therapeutic qualities to the secondary metabolites like tannins, alkaloids, and phenols present in it. New synthetic drugs are being formulated by using these secondary metabolites as a prototype. This review aimed to provide a summary of the chemometric profile, toxicity, and pharmacological activities of the aqueous leaf extract of C. procera based on the current literature.

3.
BMC Complement Med Ther ; 24(1): 241, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902620

ABSTRACT

Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.


Subject(s)
Anti-Infective Agents , Anti-Inflammatory Agents , Nigella sativa , Plant Extracts , Seeds , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Seeds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nigella sativa/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Ferric Compounds/chemistry , Green Chemistry Technology
4.
Cureus ; 16(5): e59613, 2024 May.
Article in English | MEDLINE | ID: mdl-38832175

ABSTRACT

INTRODUCTION:  Dental caries has become a substantial global health burden, and many techniques have been used in dentistry to protect the tooth from decay. Brassica oleracea is a green cruciferous vegetable with a good source of vitamins C, K and E, which are also effective antibiotics and antioxidants. These characteristics will shield the oral cavity from pathogenic onslaught and can be considered during the formulation of antimicrobial mouthwash, toothpaste, or dental sealants. MATERIALS AND METHODS:  B. oleracea extract was prepared by heating and condensing the red and green cabbage. Both extracts were assessed for antimicrobial activity (antibacterial and antifungal activities) and cytotoxicity. After incubation, the zone of inhibition was calculated for antibacterial activity and the number of live nauplii for cytotoxicity.  Results: The extract from red cabbage was found to have more effective antibacterial properties than that from green cabbage. The red B. oleracea extract formed the highest zone of inhibition against Candida albicans (20 mm), followed by Enterococcus faecalis (15 mm) and Streptococcus mutans (9 mm). In contrast, the green cabbage extract formed the highest inhibition against E. faecalis (12 mm). The cytotoxicity increases with increased concentration, with the highest toxicity at 20 µL for both extracts.  Conclusion: The properties of B. oleracea can be utilized in dental products such as toothpaste, mouthwash, and dental sealants due to their antibacterial effects. By incorporating B. oleracea extracts into these products, oral health professionals may soon have additional tools to promote oral hygiene and prevent oral infections, offering a natural and effective alternative to traditional oral care ingredients.

5.
J Pharm Bioallied Sci ; 16(Suppl 2): S1345-S1349, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882775

ABSTRACT

Andrographis (A.) paniculata contains andrograpanin, which is both anti-inflammatory and anti-infective. Rosa comprises over 150-200 species from the family Rosaceae. Rosa exerts various properties, including anti-inflammatory property. Herbal mouthwash was made using A. paniculata leaf powder and Rosa extract. The anti-inflammatory effect was evaluated using an albumin denaturation assay and egg albumin denaturation. The percentage of protein denaturation that is inhibited by the formulation of A. paniculata and Rosa indicates that it has strong anti-inflammatory effect. According to the findings, as concentration is raised, the formulation's anti-inflammatory activity rises. The formulation's percentage inhibition values are also equivalent to those of a typical anti-inflammatory medicine, indicating that it may be effective as a natural anti-inflammatory agent.

6.
J Pharm Bioallied Sci ; 16(Suppl 2): S1330-S1334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882777

ABSTRACT

A new area of nanotechnology, "green synthesis" studies nanomaterials utilizing natural biomaterials like plants, flowers, and microbesGreen nanoparticle synthesis offers various benefits, such as cost efficiency, pollution reduction, and environmental compatibility. Among nanoparticles, metallic variants have garnered the greatest attention due to their unique physical and chemical attributes. Strontium (Sr), known for promoting growth, aiding bone regeneration, and stimulating calcium signaling, holds significance in the medical domain. Consequently, Sr-based nanoparticles have gained interest in medical and dental applications due to their resemblance to calcium properties. Researchers worldwide are drawn to Mimosa pudica because of its pharmacological properties, including its ability to treat wounds, and its anti-diabetic, anti-toxin, anti-hepatotoxin, and antioxidant effects. Mimosa pudica mediated strontium nanoparticles' antioxidant activity was tested against FRAP assay, H2O2 assay, and DPPH assay with ascorbic acid as standard, where in all three assays, increasing concentration of Mimosa pudica mediated strontium nanoparticles exhibited increasing antioxidant activity which was similar to the ascorbic acid. Hence, this can be used as a novel antioxidant agent in the near future.

7.
J Pharm Bioallied Sci ; 16(Suppl 2): S1340-S1344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882787

ABSTRACT

Nanotechnology is emerging as a promising approach in the development of novel therapeutic strategies. Nanoparticles, due to their unique physicochemical properties and small size, have the potential to improve the delivery of therapeutic agents, enhance their bioavailability, and increase their efficacy. Among various types of nanoparticles, strontium nanoparticles have gained attention due to their potential antidiabetic activity and cytotoxic effects against cancer cells. Mimosa pudica, also known as "Sensitive Plant" or "Touch-Me-Not," is a medicinal plant known for its diverse pharmacological activities, including antidiabetic and anticancer properties. Recent research has focused on the synthesis of strontium nanoparticles by using Mimosa pudica as a green and sustainable approach. These nanoparticles have shown promising results in terms of their antidiabetic activity and cytotoxic effects against cancer cells. Thus, in this study, the antidiabetic effect was studied using the alpha-amylase inhibitor assay, and the cytotoxic effect was studied using the brine shrimp lethality assay. In these assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited increasing antidiabetic and cytotoxic effects, which was similar to the standard used, which is acarbose. Hence, this can be used as a novel antidiabetic and cytotoxic agent in the future.

8.
J Pharm Bioallied Sci ; 16(Suppl 2): S1360-S1364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882789

ABSTRACT

Andrographis Paniculata also known as the "King of Bitters" is a herbal medicine of the Acanthaceae family which is native to India and Sri Lanka. Andrographis Paniculata is a very useful medicinal plant as it has antioxidant, antidiabetic, antipyretic, anticancer properties. The main antibacterial activity of Andrographis Paniculata is due to the presence of andrographolide and arabinogalactan proteins. The medicinal properties of rose are mostly due to their abundance in phenolic compounds. They have many pharmacological properties like antibacterial, antioxidant, thrombolytic, and anticancer properties. The hips of the rose plant have Vitamin C in a concentration that is three times more than a citrus fruit that can be used in the treatment of a flu or a cold. Mueller-Hinton agar was utilized for this activity to determine the zone of inhibition. The plant extracts with different concentrations were loaded, and the plates were incubated for 24 hours at 37°C. After the incubation time, the zone of inhibition was measured. The results of this study are significant because they demonstrate the antibacterial activity of Andrographis Paniculata and Rosa against three bacterial pathogens. This suggests that the formulation of Andrographis Paniculata and Rosa has potential as a natural antibacterial agent. Further studies are needed to explore the mechanism of action and potential applications of this formulation. In conclusion, the study shows that the formulation of Andrographis Paniculata and Rosa has significant antibacterial activity against Klebsiella, Escherichia Coli, and Enterococcus Faecalis. This suggests that the formulation of Andrographis Paniculata and Rosa has potential as a natural antibacterial agent that could be further explored for its potential use in the treatment of bacterial infections.

9.
J Pharm Bioallied Sci ; 16(Suppl 2): S1350-S1353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882786

ABSTRACT

Introduction: The green synthesis of metal oxide nanoparticles using plant extracts has emerged as an eco-friendly method. Titanium dioxide nanoparticles (TiO2NPs) were synthesized using Cissus rotundifolia in this study. Titanium dioxide nanoparticles were utilized in restorative medicine for enhanced medicinal properties and in dental composites for their antimicrobial activities. Cissus rotundifolia is recognized as a medicinal plant due to its diverse properties, including mild laxatives, anti-inflammatory, and hyperglycemic activities. Materials and Methods: The antimicrobial activity of the prepared nanoparticles against Lactobacillus Sp. and Streptococcus mutans was evaluated using agar well diffusion method. The bactericidal and bacteriostatic activity of the prepared TiO2NPs was examined using time-kill kinetic analysis. Results: The prepared nanoparticles exhibited potential antimicrobial activity against Lactobacillus sp. (12 mm) at the highest concentration of 100 µg/mL. The prepared nanoparticles also exhibited excellent bactericidal activity against Lactobacillus Sp. and mild bacteriostatic activity against Staphylococcus mutans at the highest concentration of 100 µg/mL. Conclusion: The synthesized TiO2NPs showed significant antimicrobial activity against dental pathogens. The observed anticariogenic activity shows the potential of nanoparticles for dental applications. Hence, the prepared nanoparticles can be used in the field of dentistry as an antimicrobial agent instead of synthetic drugs causing more side effects.

10.
J Pharm Bioallied Sci ; 16(Suppl 2): S1335-S1339, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882793

ABSTRACT

Background: Considerable focus has been directed toward green synthesis as a dependable, sustainable, and environmentally friendly approach for synthesizing various nanomaterials. Mimosa pudica, a quickly grown pantropical weed, has been used widely for its anti-inflammatory and antimicrobial activity in traditional medicine. The development of strontium-based nanoparticles and nanoparticles linked with strontium has garnered attention in recent years due to their established utility in diverse domains such as effective drug distribution, bioimaging, cancer treatment, and advancements in bone engineering. Aims and Objectives: To examine the green synthesise of strontium nanoparticles using Mimosa pudica and its anti-inflammatory activity. Material and Methods: Mimosa pudica-mediated strontium nanoparticles' anti-inflammatory activity was tested using bovine serum albumin denaturation assay, egg albumin denaturation assay, and membrane stabilization assay with diclofenac sodium as the standard. Result: In all three assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited an increasing anti-inflammatory effect, which was similar to the standard diclofenac sodium. Conclusion: Consequently, this holds promise as a new potential anti-inflammatory agent in forthcoming applications.

11.
J Pharm Bioallied Sci ; 16(Suppl 2): S1354-S1359, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882859

ABSTRACT

Aim: The current work intends to examine the antibacterial activity of silver nanoparticles (AgNPs) mediated by Ocimum gratissimum stem extract against wound infections. Materials and Methods: To evaluate the membrane damage brought on by AgNPs, analyses of cytoplasmic leakage and protein leakage assays were performed. Results: The outcomes demonstrated that all of the tested bacterial strains were significantly resistant to the AgNPs' antibacterial activity. AgNPs damaged membranes and caused cellular contents to leak in the target pathogens, according to an examination of protein and cytoplasmic leakage. Conclusion: According to the current investigation, AgNPs mediated by Ocimum gratissimum stem extract may be effective antibacterial agents against microorganisms that cause wounds.

12.
Cureus ; 16(4): e58098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38741855

ABSTRACT

Aim This study aims to synthesize silver nanoparticles (AgNPs) using herbal formulations derived from Zingiber officinale (ginger) and Ocimum gratissimum and to evaluate their anti-inflammatory and antidiabetic activities in vitro. Methods The synthesis of AgNPs was performed using Z. officinale and O. gratissimum, and the AgNPs were confirmed by analyzing their ultraviolet-vis spectra. The anti-inflammatory activity was assessed using two assays, specifically the bovine serum albumin (BSA) denaturation assay and the egg albumin (EA) denaturation assay. The antidiabetic activity was assessed using the α-amylase inhibitory assay and the ß-glucosidase inhibitory assay. Results This study evaluated the anti-inflammatory and antidiabetic activities of green-synthesized AgNPs using Z. officinale and O. gratissimum. The maximum absorption peak was observed for AgNPs at ~433 nm (wavelength). In the BSA denaturation assay, 78% inhibition was observed at a concentration of 50 µl. Similarly, in the EA denaturation assay, an inhibition of 74% was observed at the same concentration compared to the standard. In terms of antidiabetic activity, when compared to the standard at a concentration of 50 µl, the α-amylase inhibitory assay and the ß-glucosidase inhibitory assay showed approximately 78% and 80% inhibition, respectively. Conclusion The use of Z. officinale and O. gratissimum extracts for the synthesis of AgNPs using a green synthesis method presents a sustainable and environmentally friendly approach. The synthesized AgNPs demonstrated significant anti-inflammatory and antidiabetic efficacy, suggesting their potential application in pharmaceuticals for treating diabetes and inflammation. Further research is necessary to investigate the effectiveness and safety of these substances in humans and to understand their underlying mechanisms of action.

13.
Cureus ; 16(4): e57824, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38721202

ABSTRACT

Background Dental caries stands out as a significant global infectious disease, with oral diseases posing substantial health concerns primarily due to bacterial, fungal, and yeast infections. Kalanchoe pinnata demonstrates antimicrobial, anticancer, antiparasitic, and hepatoprotective properties, with applications in various ailments. Piper longum exhibits potent antimicrobial effects against bacterial and viral pathogens due to the bioactive compounds within the plant. This study aims to assess the antimicrobial efficacy of P. longum and K. pinnata formulation against oral pathogens and evaluate its other biomedical potential. Methodology The agar well diffusion method was employed to assess the antimicrobial activity of the formulation containing P. longum and K. pinnata against oral pathogens. The protein leakage assay was employed to assess the ability of the prepared formulation to cause protein release from oral pathogens. The other biomedical potentials of the prepared formulation including cytotoxic effects, antioxidant, and anti-inflammatory properties were investigated using in vitro assays. Results The prepared P. longum and K. pinnata formulation demonstrated significant antimicrobial activity against tested oral pathogens, with inhibition zones observed for Staphylococcus aureus (32 mm), Streptococcus mutans (22 mm), and Candida albicans (12 mm). However, no inhibition was observed on Enterococcus faecalis at the highest concentration of 100 µL. Additionally, the formulation demonstrated significant antioxidant activity with percentages of 89.22%, 84.4%, and 86.93% in 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), and ferric (Fe3+)-reducing antioxidant power assays, respectively, at the maximum concentration of 50 µL. Furthermore, the formulation exhibited potential anti-inflammatory activity, as evidenced by 79% inhibition in bovine serum albumin (BSA) denaturation assay and 77% inhibition in egg albumin (EA) denaturation assay at the highest concentration of 50 µL. Additionally, the formulation displayed low cytotoxic effects, even at the highest concentration of 80 µL. Conclusion K. pinnata and P. longum formulation demonstrated potential antimicrobial efficacy against oral pathogens and exhibited diverse therapeutic potentials. Thus, the developed formulation could be used as a potential alternative for pharmaceutical drugs against oral pathogens.

14.
Cureus ; 16(4): e58425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38756274

ABSTRACT

Aim The aim of this study is to examine the possible therapeutic effect of pterostilbene (PTS), a chemical present in grapes and blueberries, in the treatment of liver cancer by analysing its interactions with important proteins linked to the wingless/integrated (Wnt) signaling system. Objective Using computational techniques like molecular docking and absorption, distribution, metabolism, and excretion (ADME) studies, this research focuses on examining the pharmacokinetics and molecular interactions of PTS with proteins such as vimentin (Vim), glycogen synthase kinase 3 beta (GSK3-ß), epithelial cadherin (E-cadherin), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), c-Jun N-terminal kinase (JNK), and Wnt, all of which are connected to the Wnt signaling pathway in liver cancer. Methods The study includes the synthesis of proteins and ligands, ADME investigations for PTS, and AutoDock Vina molecular docking simulations to evaluate binding affinities and interactions. PTS is obtained from PubChem, while protein structures are obtained from the Protein Data Bank. Results Strong binding affinities between PTS and essential proteins in the Wnt signaling cascade are shown by molecular docking, which also highlights noteworthy hydrogen bonds, hydrophobic interactions, and electrostatic contacts. According to an ADME study, PTS has advantageous pharmacokinetic properties, such as moderate solubility, membrane permeability, and a minimal chance of drug interactions. Conclusion The extensive study highlights PTS's potential as a viable treatment option for liver cancer. The study promotes its investigation in cutting-edge liver cancer therapy approaches and urges more investigation into the molecular mechanisms, underpinning its anticancer properties. This paper sheds important light on the role of natural chemicals in cancer therapy and emphasizes the need for computational methods in drug discovery.

15.
Cureus ; 16(4): e58287, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38752090

ABSTRACT

Aim The study aims to evaluate the antibacterial properties of ethanolic extracts from Clitoria ternatea and Camellia sinensis against pathogens causing UTI, wound pathogens, and other clinical bacterial infections and their cytotoxic effects using the brine shrimp lethality assay (BSLA). Methods Ethanolic extracts of C. ternatea and C. sinensis were prepared, and their antibacterial activity was tested against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis using the well diffusion method. The cytotoxicity was assessed through the BSLA, determining the LC50 values for each extract. Results The formulation of both plant extracts exhibited significant antibacterial activity against UTI pathogens, and wound pathogen bacteria showed higher efficacy compared to other studies. The BSLA revealed a dose-dependent increase in toxicity, with C. ternatea extracts demonstrating higher cytotoxicity than C. sinensis. Conclusion The ethanolic extracts of C. ternatea and C. sinensis possess antibacterial properties against UTI-causing bacteria and show cytotoxic effects in a brine shrimp model. These findings suggest the potential of these plants for developing alternative treatments for UTI. However, further research is necessary to fully understand their safety and efficacy in human subjects.

16.
Cureus ; 16(4): e58428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38765427

ABSTRACT

Introduction Effective root canal cleaning and sealing are essential for a successful endodontic procedure. For the purpose of disinfecting root canals, both herbal and non-herbal medications are recommended. This study aimed to analyze the antimicrobial and cytotoxic properties of biosynthesized silver nanoparticles (AgNPs) synthesized from Azadirachta indica/neem and chemically synthesized AgNPs from trisodium citrate (TSC) against oral pathogens to be further used as an irrigant in endodontic treatment. Materials and methods To synthesize A. indica AgNPs, powdered fresh A. indica leaves were weighed, added to double distilled water, heated for 30 minutes, and then combined with silver nitrate solution. TSC was also used to create TSC AgNPs. X-ray diffraction (XRD), scanning electron microscopy (SEM), ocular observation, and the ultraviolet-visible light (UV-vis) spectrum were used to characterize the AgNPs. Studies were conducted on the extract's characteristics, including its cytotoxicity and antibacterial activity. Results The hue shift and peak on the UV-vis spectrophotometer were signs that AgNPs were forming. The XRD pattern showed that the sample included crystalline AgNPs, mostly spherical ones. By using SEM, the presence of AgNPs was also verified. AgNPs that were synthesized showed antimicrobial efficacy against Enterococcus faecalis. Compared to chemically synthesized AgNPs, A. indica AgNPs showed lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, a bigger zone of inhibition (ZOI), and less cytotoxic action. Conclusion This study demonstrates the minimal cytotoxicity and antibacterial activity of A. indica AgNPs against E. faecalis. This suggests that they might also be employed as root canal cleaners. Before experimenting with animals or cell lines in clinical trials for endodontic treatment, further research should be done.

17.
Cureus ; 16(4): e58562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38770461

ABSTRACT

Background Glass ionomer cement (GIC) plays a vital role in dental restorative procedures, serving purposes such as filling, luting, and adhesion. However, its inadequate mechanical properties pose challenges, especially in areas experiencing significant stress. To overcome this limitation, nanohydroxyapatite (nHA), known for its bioactive phosphate content, is added to the GIC at specific concentrations to improve its properties. Aim  We aim to evaluate the antimicrobial property and compressive strength of green-mediated nHA-incorporated GIC. Material and methods Green synthesis of hydroxyapatite nanoparticles was prepared using Moringa oleifera extract in a solvent form and eggshell waste served as the calcium source. These nHA powders were then integrated into the GIC at varying concentrations (3%, 5%, and 10%) designated as Group I, Group II, and Group III, respectively, while Group IV (control) consisted of conventional GIC. Specimens were fabricated and subjected to chemical structure analysis through Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), and scanning electron microscopy (SEM). The antimicrobial activity and compressive strength of all groups were investigated. The antimicrobial activity against Streptococcus mutans and Lactobacillus was evaluated through the minimum inhibitory concentration (MIC) test, while compressive strength was evaluated by measuring the maximum force endured by the specimen before fracturing. Data analysis utilized IBM SPSS Statistics software, employing repeated measures ANOVA to determine mean MIC values and compressive strength, with Tukey's posthoc test for pairwise comparisons. Results The results of the study showed that the antimicrobial efficacy of nHA GIC improved with increasing weight percent (% wt) of the additive, exhibiting significantly enhanced activity against Streptococcus mutans and Lactobacillus compared to the control group (Group IV) with statistical significance (p < 0.05). Moreover, the compressive strength exhibited notable enhancements in the modified groups, including Group I (172.55 ± 0.76), Group II (178.16 ± 0.760), and Group III (182.45 ± 0.950), when compared to the control (162.46 ± 1.606), with statistically significant differences (p < 0.05). Conclusion The study demonstrates that the incorporation of green-mediated nHA-containing GIC results in superior antimicrobial efficacy and compressive strength compared to the control group (Group IV). In particular, the highest concentration of nHA-modified GIC (10%) exhibited the most favorable antimicrobial properties along with increased strength. Therefore, utilizing green-mediated nHA in the GIC shows promise as an effective restorative material. Future investigations should delve into the molecular chemistry and bonding mechanisms to further explore its potential.

18.
Cureus ; 16(3): e56078, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618398

ABSTRACT

Background and objective Glass ionomer cement (GIC), also known as polyalkenoate cement, has been extensively used in dentistry for both luting and restorative purposes. Despite being the first choice for aesthetic restorations due to their chemical bonding ability to teeth, GICs have faced challenges such as low mechanical properties, abrasion resistance, and sensitivity to moisture, leading to the search for improved materials.  This study aims to assess the effects of thermocycling on the compressive, flexural strength, and microhardness of green-mediated nanocomposite-modified GIC in comparison to traditional GIC. Methodology Green-mediated nanoparticles, consisting of chitosan, titanium, zirconia, and hydroxyapatite (Ch-Ti-Zr-HA), were synthesized using a one-pot synthesis technique to form nanocomposites. These nanocomposites were then incorporated into GIC specimens in varying concentrations (3%, 5%, and 10%), denoted as Group I, Group II, and Group III, respectively. Group IV served as the control, consisting of conventional GIC. To assess the performance of the novel restorative materials over an extended period, compressive strength, flexural strength, and microhardness were measured before and after thermocycling using a universal material testing machine. Furthermore, scanning electron microscopy (SEM) analysis was carried out following the thermocycling process. The collected data were subjected to statistical analysis through one-way analysis of variance (ANOVA) and paired t-tests. Results  The findings demonstrated that, in comparison to the control group, both the mean compressive strength and flexural strength, as well as hardness, were notably higher for the 10% and 5% nanocomposite-modified GIC specimens before and after thermocycling (P < 0.05). Notably, there was no notable difference observed between the 5% and 10% concentrations (P > 0.05). These results suggest that incorporating green-mediated nanocomposites (Ch-Ti-Zr-HA) modified GIC at either 5% or 10% concentration levels leads to improved mechanical properties, indicating their potential as promising alternatives in dental restorative materials. Conclusions Based on our findings, it can be inferred that the 10% and 5% concentrations of green-mediated (Ch-Ti-Zr-HA) modified GIC exhibit superior compressive and flexural strength compared to conventional GIC. Additionally, analysis of the scanning electron microscope (SEM) morphology revealed that green-mediated GIC displays smoother surface characteristics in contrast to conventional GIC. These results underscore the potential advantages of utilizing green-mediated nanocomposite-modified GIC in dental applications, suggesting enhanced mechanical properties and surface quality over conventional.

19.
Cureus ; 16(3): e56234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618412

ABSTRACT

Background Glass ionomer cement (GIC) demonstrates biocompatibility and fluoride ion release, indicating their potential to inhibit a wide range of bacteria, although this remains uncertain. Lemongrass and neem are recognized for their potent antimicrobial activity against numerous pathogenic microorganisms. The objective of the study is to evaluate the antimicrobial effectiveness and compressive strength of GIC modified with neem and lemongrass. Methodology Lemongrass and neem were incorporated into conventional GIC at varying concentrations. Group I - neem-modified GIC (0.5%, 1%, 2%), group II - lemongrass-modified GIC (0.5%, 1%, 2%), and group III (non-modified GIC as a control group). The disk-shaped specimens were then compared to unmodified GIC (control). Antimicrobial effectiveness was assessed using the minimal inhibitory concentration (MIC) assay against Streptococcus mutans and Lactobacillus. Compressive strength was assessed using a Universal Testing Machine, with a crosshead speed set to 0.5 mm per minute. Statistical analysis was conducted with a significance level set at p < 0.05. Results Neem modification displayed superior antimicrobial effectiveness against both Streptococcus mutans and Lactobacillus at all concentrations when compared to the control, with 2% showing the least mean value of 0.262. In contrast, lemongrass modification exhibited a significant difference in effectiveness against Streptococcus mutans but no difference against Lactobacillus. Neem modification demonstrated superior performance compared to lemongrass (p < 0.05). Both modified groups showed no significant impact on compressive strength. Conclusions Neem-modified GIC demonstrated the highest antimicrobial efficacy against Streptococcus mutans and Lactobacillus without altering its compressive strength. This suggests its potential as a promising alternative material in restorative dentistry. Additional in vivo investigations are needed to assess the extended-term effectiveness of the material.

20.
Cureus ; 16(3): e56391, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633945

ABSTRACT

AIM: This study aims to quantitatively assess the anti-inflammatory and antioxidant activities of the ethanolic extract of Phoenix dactylifera seeds. MATERIALS AND METHODS: Around 30 seeds of Phoenix dactylifera were collected, crushed, and powdered; 10 gm of powder was added to 100 ml of ethanolic extract and boiled for further analysis. Egg albumin denaturation assay and hydroxyl radical scavenging assay were done to evaluate the anti-inflammatory and antioxidant activity, respectively. An independent t-test was used to compare the anti-inflammatory and antioxidant potential of the ethanolic extract of Phoenix dactylifera using SPSS Statistics version 22.0 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0; Armonk, NY: IBM Corp.), and values less than 0.05 are considered statistically significant. RESULTS: The seeds of Phoenix dactylifera have potent anti-inflammatory and antioxidant properties. Both anti-inflammatory and antioxidant properties improved with higher concentrations and were comparable to the control substances diclofenac sodium, vitamin E, and ascorbic acid, respectively. The most significant anti-inflammatory and antioxidant effect was observed at a dosage of 50 µL, with a p-value of 0.001. CONCLUSION: To conclude, we found that the ethanolic extract of Phoenix dactylifera has anti-inflammatory and antioxidant activity, which can further be used for the improvement of pharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL
...