Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 19(6): e2205800, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36587989

ABSTRACT

The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)-grown monolayer WS2 , it is found that a higher density of transition metal dopants is always incorporated in sulfur-terminated domains when compared to tungsten-terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron- and vanadium-doped WS2 monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge-dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten-zigzag edges, resulting in the formation of open sites at sulfur-zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in-plane hetero-/multi-junctions that display fascinating electronic, optoelectronic, and magnetic properties.

2.
Biochemistry ; 61(14): 1456-1464, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35786852

ABSTRACT

Here, we report a new phenomenon in which lysozyme fibrils formed in a solution of acetic acid spontaneously refold to a different polymorph through a disassembled intermediate upon the removal of acetic acid. The structural changes were revealed and characterized by deep-UV resonance Raman spectroscopy, nonresonance Raman spectroscopy, intrinsic tryptophan fluorescence spectroscopy, and atomic force microscopy. A PPII-like structure with highly solvent-exposed tryptophan residues predominates the intermediate aggregates before refolding to polymorph II fibrils. Furthermore, the disulfide (SS) bonds undergo significant rearrangements upon the removal of acetic acid from the lysozyme fibril environment. The main SS bond conformation changes from gauche-gauche-trans in polymorph I to gauche-gauche-gauche in polymorph II. Changing the hydrophobicity of the fibril environment was concluded to be the decisive factor causing the spontaneous refolding of lysozyme fibrils from one polymorph to another upon the removal of acetic acid. Potential biological implications of the discovered phenomenon are discussed.


Subject(s)
Amyloid , Muramidase , Amyloid/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Muramidase/chemistry , Protein Folding , Tryptophan/chemistry
3.
ACS Nano ; 16(4): 6858-6865, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35404582

ABSTRACT

MXenes are among the most widely researched materials due to a unique combination of high electronic conductivity and hydrophilic surface, confined in a 2D structure. Therefore, comprehensive characterization of individual MXene flakes is of great importance. Here we report on nanoscale Raman imaging of single-layer and few-layer flakes of Ti3C2Tx MXene deposited on a gold substrate using tip-enhanced Raman scattering (TERS). TERS spectra of MXene monolayers are dominated by an intense peak at around 201 cm-1 and two well-defined peaks at around 126 and 725 cm-1. Absolute intensities of these peaks decrease with increasing number of layers, though the relative intensity of the 126 and 725 cm-1 bands as compared to the 201 cm-1 band increases. The peak positions of the main MXene bands do not significantly change in flakes of different number of layers, suggesting weak coupling between the MXene layers. In addition, we observed stiffening of the 201 cm-1 vibration over the wrinkles in MXene flakes. Using TERS for nanoscale spectroscopic characterization of Ti3C2Tx allows fast Raman mapping with deep subdiffraction resolution at the laser power density on the sample about an order of magnitude lower as compared to confocal Raman measurements. Finally, we demonstrate very high environmental stability of stoichiometric single-layer MXenes and show that the intensity of TERS response from the single- and few-layer flakes of Ti3C2Tx can be used to track early stages of degradation, well before significant morphological changes appear.

4.
Methods Enzymol ; 659: 145-170, 2021.
Article in English | MEDLINE | ID: mdl-34752283

ABSTRACT

Expression of heterologous genes in Escherichia coli is a routine technology for recombinant protein production, but the predictable recovery of properly folded and uniformly bioactive material remains a challenge. Misfolded proteins typically accumulate as insoluble inclusion bodies, and a variety of strategies have been employed in efforts to increase the yield of soluble product. One technique is the overexpression of E. coli protein chaperones during recombinant protein induction, in an effort to increase the folding capacity of the bacterial host. We have developed an alternative approach, by supplementing the host protein folding machinery with chaperones from other species. Extremophiles have evolved under conditions (extremes of temperature, salinity, pressure, and/or pH) that make them attractive candidates for possessing chaperones with novel folding activities. The green fluorescent protein (GFP) of Aequorea victoria, which is predominantly insoluble under typical recombinant expression culture conditions, was employed as an in vivo indicator of protein folding activity for chaperone homologs from a variety of extremophiles. For a subset of the chaperones tested, co-expression with GFP promoted an increase in both fluorescence signal intensity as well as the amount of GFP recovered in the soluble protein fraction. Several archaeal chaperones were also found to be able to refold soluble Lyt_Orn C40 peptidase from inclusion bodies in vitro. In particular, Pf Cpn(MA), a mutant chaperonin which exhibited significant refolding activity, is also shown to deconstruct the morphology and structure of inclusion bodies (Kurouski et al., 2012). Hence, the simple and rapid GFP assay provides a tool to screen for extremophilic chaperones that exhibit folding activity under E. coli growth conditions, and suggests that increasing the repertoire of heterologous chaperones might provide a partial but general solution to the problem of recombinant protein insolubility.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Folding , Recombinant Proteins/metabolism
5.
J Am Chem Soc ; 139(29): 9755-9758, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28689402

ABSTRACT

A purple color is formed during the fibrillation of lysozyme, a well-studied protein lacking a prosthetic group. The application of Raman spectroscopy, electron paramagnetic resonance and UV-vis absorption spectroscopy indicates the formation of a sulfur∴π-bonded radical cation due to the methionine-phenylalanine interaction, which is consistent with a small molecule model reported in the literature. A purple chromophore with characteristic 550 nm absorption is formed due to a specific orientation of the sulfur-centered radical cation and a phenyl ring stabilized by the fibril framework. A specific fibril conformation and the resulting formation of the chromophore are controlled reversibly by varying the pH. This is the first known example of a side chain self-assembled chromophore formed due to protein aggregation.


Subject(s)
Color , Muramidase/chemistry , Muramidase/metabolism , Animals , Chickens , Egg White , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Free Radicals/metabolism , Hydrogen-Ion Concentration , Muramidase/chemical synthesis , Protein Aggregates , Protein Conformation , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Sulfur/chemistry , Sulfur/metabolism
6.
Chirality ; 29(9): 469-475, 2017 09.
Article in English | MEDLINE | ID: mdl-28710791

ABSTRACT

Supramolecular chirality of amyloid fibrils, protein aggregates related to many neurodegenerative diseases, is a remarkable property associated with fibril structure and polymorphism. Since its discovery almost 10 years ago there is still little understanding of this phenomenon, including the cause of the highly enhanced vibrational circular dichroism (VCD) intensity arising from fibril supramolecular chirality. In this study, VCD spectra, enhanced by filament supramolecular chirality, are presented for lysozyme and insulin fibrils above and below pH 2 and after deuterium exchange, above and below pD 2. Supramolecular chirality (observed by VCD) and fibril morphology (documented by atomic force microscopy) are not affected by protein deuteriation. In D2 O the fibril VCD sign pattern changes to fewer bands, with implications for the amide I/II origin of enhanced VCD intensity. Separation of amide I and II signals will facilitate calculations of enhanced VCD spectra of amyloid fibrils and enable a better understanding of the origin of the VCD sign pattern.


Subject(s)
Amyloid/chemistry , Circular Dichroism , Deuterium/chemistry , Protein Aggregates , Animals , Humans , Hydrogen-Ion Concentration , Insulin/chemistry , Muramidase/chemistry
7.
J Phys Chem Lett ; 7(14): 2758-64, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27387853

ABSTRACT

In this combined experimental (deep ultraviolet resonance Raman (DUVRR) spectroscopy and atomic force microscopy (AFM)) and theoretical (molecular dynamics (MD) simulations and stress-strain (SS)) study, the structural and mechanical properties of amyloid beta (Aß40) fibrils have been investigated. The DUVRR spectroscopy and AFM experiments confirmed the formation of linear, unbranched and ß-sheet rich fibrils. The fibrils (Aß40)n, formed using n monomers, were equilibrated using all-atom MD simulations. The structural properties such as ß-sheet character, twist, interstrand distance, and periodicity of these fibrils were found to be in agreement with experimental measurements. Furthermore, Young's modulus (Y) = 4.2 GPa computed using SS calculations was supported by measured values of 1.79 ± 0.41 and 3.2 ± 0.8 GPa provided by two separate AFM experiments. These results revealed size dependence of structural and material properties of amyloid fibrils and show the utility of such combined experimental and theoretical studies in the design of precisely engineered biomaterials.

8.
EMBO J ; 34(18): 2363-82, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26303906

ABSTRACT

The aggresome is an organelle that recruits aggregated proteins for storage and degradation. We performed an siRNA screen for proteins involved in aggresome formation and identified novel mammalian AAA+ protein disaggregases RuvbL1 and RuvbL2. Depletion of RuvbL1 or RuvbL2 suppressed aggresome formation and caused buildup of multiple cytoplasmic aggregates. Similarly, downregulation of RuvbL orthologs in yeast suppressed the formation of an aggresome-like body and enhanced the aggregate toxicity. In contrast, their overproduction enhanced the resistance to proteotoxic stress independently of chaperone Hsp104. Mammalian RuvbL associated with the aggresome, and the aggresome substrate synphilin-1 interacted directly with the RuvbL1 barrel-like structure near the opening of the central channel. Importantly, polypeptides with unfolded structures and amyloid fibrils stimulated the ATPase activity of RuvbL. Finally, disassembly of protein aggregates was promoted by RuvbL. These data indicate that RuvbL complexes serve as chaperones in protein disaggregation.


Subject(s)
Amyloid/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , Organelles/metabolism , ATPases Associated with Diverse Cellular Activities , Amyloid/genetics , Carrier Proteins/genetics , DNA Helicases/genetics , HEK293 Cells , HeLa Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Organelles/genetics , Organelles/pathology
9.
J Phys Chem B ; 119(27): 8521-5, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26023710

ABSTRACT

Amyloid fibril polymorphism is not well understood despite its potential importance for biological activity and associated toxicity. Controlling the polymorphism of mature fibrils including their morphology and supramolecular chirality by postfibrillation changes in the local environment is the subject of this study. Specifically, the effect of pH on the stability and dynamics of HET-s (218-289) prion fibrils has been determined through the use of vibrational circular dichroism (VCD), deep UV resonance Raman, and fluorescence spectroscopies. It was found that a change in solution pH causes deprotonation of Asp and Glu amino acid residues on the surface of HET-s (218-289) prion fibrils and triggers rapid transformation of one supramolecular chiral polymorph into another. This process involves changes in higher order arrangements like lateral filament and fibril association and their supramolecular chirality, while the fibril cross-ß core remains intact. This work suggests a hypothetical mechanism for HET-s (218-289) prion fibril refolding and proposes that the interconversion between fibril polymorphs driven by the solution environment change is a general property of amyloid fibrils.


Subject(s)
Hydrogen-Ion Concentration , Prions/chemistry , Circular Dichroism , Escherichia coli , Microscopy, Atomic Force , Protein Folding , Protein Structure, Secondary , Spectrophotometry, Infrared , Spectrum Analysis, Raman
10.
Sci Rep ; 4: 6688, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25345891

ABSTRACT

Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major advantage of the system, consisting of rings with eight identical subunits, is that it amplifies the effects of a mutation as compared with the human counterpart, in which just one subunit per ring is defective. Therefore, the slight deficit of a non-lethal mutation can be detected and characterized.


Subject(s)
Archaea/genetics , Chaperonin Containing TCP-1/chemistry , Chaperonin Containing TCP-1/genetics , Mutation , Protein Multimerization , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Folding , Protein Interaction Domains and Motifs , Sequence Alignment , Thermodynamics
11.
J Am Chem Soc ; 136(6): 2302-12, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24484302

ABSTRACT

The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for "normal" left-hand-helical filaments and below pH 2 for "reversed" right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-ß-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218-289) prion, and a short polypeptide fragment of transthyretin, TTR (105-115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases.


Subject(s)
Amyloid/chemistry , Circular Dichroism , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Muramidase/chemistry , Protein Structure, Secondary , Stereoisomerism , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...