Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ageing Res Rev ; 91: 102072, 2023 11.
Article in English | MEDLINE | ID: mdl-37709055

ABSTRACT

Alzheimer's Disease (AD) is a brain disorder that causes the brain to shrink and eventually causes brain cells to die. This neurological condition progressively hampers cognitive and memory functions, along with the ability to carry out fundamental tasks over time. From the symptoms it is very difficult to detect during its early stage. It has become necessary to develop a computer assisted diagnostic models for the early AD detection. This survey work, discussed about a review of 110 published AD detection methods and techniques from the year 2011 to till-date. This study lies in its comprehensive exploration of AD detection methods using a range of artificial intelligence (AI) techniques and neuroimaging modalities. By collecting and analysing 50 papers related to AD diagnosis datasets, the study provides a comprehensive understanding of the diversity of input types, subjects, and classes used in AD research. Summarizing 60 papers on methodologies gives researchers a succinct overview of various approaches that contribute to enhancing detection accuracy. From the review, data are acquired and pre-processed form multiple modalities of neuroimaging. This paper mainly focused on review of different datasets used, various feature extraction methods, parameters used in neuro images. To diagnosis the Alzheimer's disease, the existing methods utilized three most common artificial intelligence techniques such as machine learning, deep learning, and transfer learning. We conclude this survey work by providing future perspectives for AD diagnosis at early stage.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Artificial Intelligence , Neuroimaging/methods , Diagnosis, Computer-Assisted , Machine Learning , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
2.
Sci Rep ; 13(1): 8516, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231044

ABSTRACT

COVID-19, a global pandemic, has killed thousands in the last three years. Pathogenic laboratory testing is the gold standard but has a high false-negative rate, making alternate diagnostic procedures necessary to fight against it. Computer Tomography (CT) scans help diagnose and monitor COVID-19, especially in severe cases. But, visual inspection of CT images takes time and effort. In this study, we employ Convolution Neural Network (CNN) to detect coronavirus infection from CT images. The proposed study utilized transfer learning on the three pre-trained deep CNN models, namely VGG-16, ResNet, and wide ResNet, to diagnose and detect COVID-19 infection from the CT images. However, when the pre-trained models are retrained, the model suffers the generalization capability to categorize the data in the original datasets. The novel aspect of this work is the integration of deep CNN architectures with Learning without Forgetting (LwF) to enhance the model's generalization capabilities on both trained and new data samples. The LwF makes the network use its learning capabilities in training on the new dataset while preserving the original competencies. The deep CNN models with the LwF model are evaluated on original images and CT scans of individuals infected with Delta-variant of the SARS-CoV-2 virus. The experimental results show that of the three fine-tuned CNN models with the LwF method, the wide ResNet model's performance is superior and effective in classifying original and delta-variant datasets with an accuracy of 93.08% and 92.32%, respectively.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Computers , Machine Learning , Tomography, X-Ray Computed
3.
Sci Rep ; 12(1): 21557, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513786

ABSTRACT

Sentiment analysis is a process in Natural Language Processing that involves detecting and classifying emotions in texts. The emotion is focused on a specific thing, an object, an incident, or an individual. Although some tasks are concerned with detecting the existence of emotion in text, others are concerned with finding the polarities of the text, which is classified as positive, negative, or neutral. The task of determining whether a comment contains inappropriate text that affects either individual or group is called offensive language identification. The existing research has concentrated more on sentiment analysis and offensive language identification in a monolingual data set than code-mixed data. Code-mixed data is framed by combining words and phrases from two or more distinct languages in a single text. It is quite challenging to identify emotion or offensive terms in the comments since noise exists in code-mixed data. The majority of advancements in hostile language detection and sentiment analysis are made on monolingual data for languages with high resource requirements. The proposed system attempts to perform both sentiment analysis and offensive language identification for low resource code-mixed data in Tamil and English using machine learning, deep learning and pre-trained models like BERT, RoBERTa and adapter-BERT. The dataset utilized for this research work is taken from a shared task on Multi task learning DravidianLangTech@ACL2022. Another challenge addressed by this work is the extraction of semantically meaningful information from code-mixed data using word embedding. The result represents an adapter-BERT model gives a better accuracy of 65% for sentiment analysis and 79% for offensive language identification when compared with other trained models.


Subject(s)
Deep Learning , Multilingualism , India , Sentiment Analysis , Language , Natural Language Processing , Oligonucleotides
4.
Comput Math Methods Med ; 2022: 8571970, 2022.
Article in English | MEDLINE | ID: mdl-36132548

ABSTRACT

The level of patient's illness is determined by diagnosing the problem through different methods like physically examining patients, lab test data, and history of patient and by experience. To treat the patient, proper diagnosis is very much important. Arrhythmias are irregular variations in normal heart rhythm, and detecting them manually takes a long time and relies on clinical skill. Currently machine learning and deep learning models are used to automate the diagnosis by capturing unseen patterns from datasets. This research work concentrates on data expansion using augmentation technique which increases the dataset size by generating different images. The proposed system develops a medical diagnosis system which can be used to classify arrhythmia into different categories. Initially, machine learning techniques like Support Vector Machine (SVM), Naïve Bayes (NB), and Logistic Regression (LR) are used for diagnosis. In general deep learning models are used to extract high level features and to provide improved performance over machine learning algorithms. In order to achieve this, the proposed system utilizes a deep learning algorithm known as Convolutional Neural Network-baseline model for arrhythmia detection. The proposed system also adopts a novel hyperparameter tuned CNN model to acquire optimal combination of parameters that minimizes loss function and produces better result. The result shows that the hyper-tuned model outperforms other machine learning models and CNN baseline model for accurate classification of normal and other five different arrhythmia types.


Subject(s)
Deep Learning , Algorithms , Arrhythmias, Cardiac/diagnostic imaging , Bayes Theorem , Electrocardiography , Humans , Machine Learning , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...