Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
4.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172101

ABSTRACT

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Subject(s)
Body Fluids , COVID-19 , Female , Humans , SARS-CoV-2 , COVID-19/complications , B-Lymphocytes , Disease Progression , Phenotype
5.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986828

ABSTRACT

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.

6.
Transplantation ; 107(8): 1810-1819, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37365692

ABSTRACT

BACKGROUND: Acute cellular rejection (ACR), an alloimmune response involving CD4+ and CD8+ T cells, occurs in up to 20% of patients within the first year following heart transplantation. The balance between a conventional versus regulatory CD4+ T cell alloimmune response is believed to contribute to developing ACR. Therefore, tracking these cells may elucidate whether changes in these cell populations could signal ACR risk. METHODS: We used a CD4+ T cell gene signature (TGS) panel that tracks CD4+ conventional T cells (Tconv) and regulatory T cells (Treg) on longitudinal samples from 94 adult heart transplant recipients. We evaluated combined diagnostic performance of the TGS panel with a previously developed biomarker panel for ACR diagnosis, HEARTBiT, while also investigating TGS' prognostic utility. RESULTS: Compared with nonrejection samples, rejection samples showed decreased Treg- and increased Tconv-gene expression. The TGS panel was able to discriminate between ACR and nonrejection samples and, when combined with HEARTBiT, showed improved specificity compared with either model alone. Furthermore, the increased risk of ACR in the TGS model was associated with lower expression of Treg genes in patients who later developed ACR. Reduced Treg gene expression was positively associated with younger recipient age and higher intrapatient tacrolimus variability. CONCLUSIONS: We demonstrated that expression of genes associated with CD4+ Tconv and Treg could identify patients at risk of ACR. In our post hoc analysis, complementing HEARTBiT with TGS resulted in an improved classification of ACR. Our study suggests that HEARTBiT and TGS may serve as useful tools for further research and test development.


Subject(s)
Heart Transplantation , T-Lymphocytes, Regulatory , Adult , Humans , Graft Rejection/diagnosis , Biomarkers/metabolism , CD4-Positive T-Lymphocytes , Heart Transplantation/adverse effects
7.
EBioMedicine ; 91: 104552, 2023 May.
Article in English | MEDLINE | ID: mdl-37037165

ABSTRACT

BACKGROUND: Long-COVID (LC) encompasses diverse symptoms lasting months after the initial SARS-CoV-2 infection. Symptoms can be debilitating and affect the quality of life of individuals with LC and their families. Although the symptoms of LC are well described, the aetiology of LC remains unclear, and consequently, patients may be underdiagnosed. Identification of LC specific biomarkers is therefore paramount for the diagnosis and clinical management of the syndrome. This scoping review describes the molecular and cellular biomarkers that have been identified to date with potential use for diagnosis or prediction of LC. METHODS: This review was conducted using the Joanna Briggs Institute (JBI) Methodology for Scoping Reviews. A search was executed in the MEDLINE and EMBASE databases, as well as in the grey literature for original studies, published until October 5th, 2022, reporting biomarkers identified in participants with LC symptoms (from all ages, ethnicities, and sex), with a previous infection of SARS-CoV-2. Non-English studies, cross-sectional studies, studies without a control group, and pre-prints were excluded. Two reviewers independently evaluated the studies, extracted population data and associated biomarkers. FINDINGS: 23 cohort studies were identified, involving 2163 LC patients [median age 51.8 years, predominantly female sex (61.10%), white (75%), and non-vaccinated (99%)]. A total of 239 candidate biomarkers were identified, consisting mainly of immune cells, immunoglobulins, cytokines, and other plasma proteins. 19 of the 239 candidate biomarkers identified were evaluated by the authors, by means of receiver operating characteristic (ROC) curves. INTERPRETATION: Diverse cellular and molecular biomarkers for LC have been proposed. Validation of candidate biomarkers in independent samples should be prioritized. Modest reported performance (particularly in larger studies) suggests LC may encompass many distinct aetiologies, which should be explored e.g., by stratifying by symptom clusters and/or sex. FUNDING: Dr. Tebbutt has received funding from the Canadian Institutes of Health Research (177747) to conduct this work. The funding source was not involved in this scoping review, or in the decision to submit this manuscript for publication.


Subject(s)
COVID-19 , Humans , Female , Middle Aged , Male , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Quality of Life , Canada , Biomarkers
8.
Front Immunol ; 13: 1061686, 2022.
Article in English | MEDLINE | ID: mdl-36569883

ABSTRACT

Understanding the epidemiology of long COVID and emerging variants has significant public-health implications as physical interventions and restrictions that help limit viral spread are eased globally. Here, we provide rationales for the necessity of updating current vaccines to improve protection against omicron and emerging variants, as well as more research into understanding the epidemiology and mechanisms of long COVID.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , SARS-CoV-2/genetics , Public Health
9.
Front Immunol ; 12: 690470, 2021.
Article in English | MEDLINE | ID: mdl-34777332

ABSTRACT

Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline - an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their "dispositional endotype" at pre-vaccination baseline, could dictate response to vaccination.


Subject(s)
Dendritic Cells/immunology , Hepatitis B Antibodies/immunology , Hepatitis B Vaccines/immunology , Hepatitis B/prevention & control , Machine Learning , Single-Cell Analysis , Adult , Aged , Canonical Correlation Analysis , Dendritic Cells/metabolism , Female , Gene Expression Profiling , Hepatitis B/epidemiology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Male , Middle Aged , Single-Cell Analysis/methods , Vaccination , Vaccine Efficacy
10.
Cytokine ; 148: 155704, 2021 12.
Article in English | MEDLINE | ID: mdl-34597920

ABSTRACT

INTRODUCTION/BACKGROUND & AIMS: Early life is marked by distinct and rapidly evolving immunity and increased susceptibility to infection. The vulnerability of the newborn reflects development of a complex immune system in the face of rapidly changing demands during the transition to extra-uterine life. Cytokines and chemokines contribute to this dynamic immune signaling network and can be altered by many factors, such as infection. Newborns undergo dynamic changes important to health and disease, yet there is limited information regarding human neonatal plasma cytokine and chemokine concentrations over the first week of life. The few available studies are limited by small sample size, cross-sectional study design, or focus on perturbed host states like severe infection or prematurity. To characterize immune ontogeny among healthy full-term newborns, we assessed plasma cytokine and chemokine concentrations across the first week of life in a robust longitudinal cohort of healthy, full-term African newborns. METHODS: We analyzed a subgroup of a cohort of healthy newborns at the Medical Research Council Unit in The Gambia (West Africa; N = 608). Peripheral blood plasma was collected from all study participants at birth (day of life (DOL) 0) and at one follow-up time point at DOL 1, 3, or 7. Plasma cytokine and chemokine concentrations were measured by bead-based cytokine multiplex assay. Unsupervised clustering was used to identify patterns in plasma cytokine and chemokine ontogeny during early life. RESULTS: We observed an increase across the first week of life in plasma Th1 cytokines such as IFNγ and CXCL10 and a decrease in Th2 and anti-inflammatory cytokines such as IL-6 and IL-10, and chemokines such as CXCL8. In contrast, other cytokines and chemokines (e.g. IL-4 and CCL5, respectively) remained unchanged during the first week of life. This robust ontogenetic pattern did not appear to be affected by gestational age or sex. CONCLUSIONS: Ontogeny is a strong driver of newborn plasma-based levels of cytokines and chemokines throughout the first week of life with a rising IFNγ axis suggesting post-natal upregulation of host defense pathways. Our study will prove useful to the design and interpretation of future studies aimed at understanding the neonatal immune system during health and disease.


Subject(s)
Chemokines/blood , Cytokines/blood , Age Factors , Cohort Studies , Female , Humans , Infant, Newborn , Male , Time Factors
11.
mBio ; 12(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33436437

ABSTRACT

The gut microbiome is a well-recognized modulator of host immunity, and its compositions differ between geographically separated human populations. Systemic innate immune responses to microbial derivatives also differ between geographically distinct human populations. However, the potential role of the microbiome in mediating geographically varied immune responses is unexplored. We here applied 16S amplicon sequencing to profile the stool microbiome and, in parallel, measured whole-blood innate immune cytokine responses to several pattern recognition receptor (PRR) agonists among 2-year-old children across biogeographically diverse settings. Microbiomes differed mainly between high- and low-resource environments and were not strongly associated with other demographic factors. We found strong correlations between responses to Toll-like receptor 2 (TLR2) and relative abundances of Bacteroides and Prevotella populations, shared among Canadian and Ecuadorean children. Additional correlations between responses to TLR2 and bacterial populations were specific to individual geographic cohorts. As a proof of concept, we gavaged germfree mice with human donor stools and found murine splenocyte responses to TLR stimulation were consistent with responses of the corresponding human donor populations. This study identified differences in immune responses correlating to gut microbiomes across biogeographically diverse settings and evaluated biological plausibility using a mouse model. This insight paves the way to guide optimization of population-specific interventions aimed to improve child health outcomes.IMPORTANCE Both the gut microbiome and innate immunity are known to differ across biogeographically diverse human populations. The gut microbiome has been shown to directly influence systemic immunity in animal models. With this, modulation of the gut microbiome represents an attractive avenue to improve child health outcomes associated with altered immunity using population-specific approaches. However, there are very scarce data available to determine which members of the gut microbiome are associated with specific immune responses and how these differ around the world, creating a substantial barrier to rationally designing such interventions. This study addressed this knowledge gap by identifying relationships between distinct bacterial taxa and cytokine responses to specific microbial agonists across highly diverse settings. Furthermore, we provide evidence that immunomodulatory effects of region-specific stool microbiomes can be partially recapitulated in germfree mice. This is an important contribution toward improving global child health by targeting the gut microbiome.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Immune System , Animals , Biodiversity , Canada , Child, Preschool , Cytokines/metabolism , Fecal Microbiota Transplantation , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Germ-Free Life , Humans , Immunity, Innate , Infant , Male , Phylogeography , Toll-Like Receptor 2
12.
Front Immunol ; 11: 578505, 2020.
Article in English | MEDLINE | ID: mdl-33329546

ABSTRACT

Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases.


Subject(s)
Acute-Phase Proteins/metabolism , Child Development , Complement System Proteins/metabolism , Immune System/metabolism , Immunity, Innate , Immunoglobulins/blood , Proteome , Age Factors , Complement System Proteins/genetics , Humans , Immune System/growth & development , Immune System/immunology , Infant, Newborn , Proof of Concept Study , Protein Interaction Maps , Proteomics , RNA, Messenger/blood
13.
Front Immunol ; 11: 578801, 2020.
Article in English | MEDLINE | ID: mdl-33329547

ABSTRACT

Background: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. Methods: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. Results: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. Conclusion: This study provides further evidence that baseline cellular and molecular characteristics of an individual's immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.


Subject(s)
Genomics , Hepatitis B Vaccines/therapeutic use , Hepatitis B/prevention & control , Immunogenicity, Vaccine , Systems Biology , Vaccination , Adult , Aged , Epigenesis, Genetic , Epigenomics , Feces/microbiology , Female , Gastrointestinal Microbiome , Gene Expression Profiling , Gene Regulatory Networks , Hepatitis B/genetics , Hepatitis B/metabolism , Hepatitis B/microbiology , Hepatitis B Antibodies/blood , Humans , Male , Middle Aged , Prospective Studies , Protein Interaction Maps , Proteomics , Time Factors , Transcriptome , Treatment Outcome
15.
Front Immunol ; 11: 615275, 2020.
Article in English | MEDLINE | ID: mdl-33193462

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2020.01061.].

16.
Front Immunol ; 11: 580373, 2020.
Article in English | MEDLINE | ID: mdl-33250895

ABSTRACT

Conventional vaccine design has been based on trial-and-error approaches, which have been generally successful. However, there have been some major failures in vaccine development and we still do not have highly effective licensed vaccines for tuberculosis, HIV, respiratory syncytial virus, and other major infections of global significance. Approaches at rational vaccine design have been limited by our understanding of the immune response to vaccination at the molecular level. Tools now exist to undertake in-depth analysis using systems biology approaches, but to be fully realized, studies are required in humans with intensive blood and tissue sampling. Methods that support this intensive sampling need to be developed and validated as feasible. To this end, we describe here a detailed approach that was applied in a study of 15 healthy adults, who were immunized with hepatitis B vaccine. Sampling included ~350 mL of blood, 12 microbiome samples, and lymph node fine needle aspirates obtained over a ~7-month period, enabling comprehensive analysis of the immune response at the molecular level, including single cell and tissue sample analysis. Samples were collected for analysis of immune phenotyping, whole blood and single cell gene expression, proteomics, lipidomics, epigenetics, whole blood response to key immune stimuli, cytokine responses, in vitro T cell responses, antibody repertoire analysis and the microbiome. Data integration was undertaken using different approaches-NetworkAnalyst and DIABLO. Our results demonstrate that such intensive sampling studies are feasible in healthy adults, and data integration tools exist to analyze the vast amount of data generated from a multi-omics systems biology approach. This will provide the basis for a better understanding of vaccine-induced immunity and accelerate future rational vaccine design.


Subject(s)
Hepatitis B Vaccines/immunology , Hepatitis B virus/physiology , Hepatitis B/diagnosis , Monitoring, Immunologic/methods , Vaccination/methods , Adult , Aged , Aged, 80 and over , Female , Hepatitis B/immunology , Humans , Male , Middle Aged , Prospective Studies , Systems Biology , Treatment Outcome
17.
J Immunol ; 205(10): 2618-2628, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33067377

ABSTRACT

In both high- and low-income countries, HIV-negative children born to HIV-positive mothers (HIV exposed, uninfected [HEU]) are more susceptible to severe infection than HIV-unexposed, uninfected (HUU) children, with altered innate immunity hypothesized to be a cause. Both the gut microbiome and systemic innate immunity differ across biogeographically distinct settings, and the two are known to influence each other. And although the gut microbiome is influenced by HIV infection and may contribute to altered immunity, the biogeography of immune-microbiome correlations among HEU children have not been investigated. To address this, we compared the innate response and the stool microbiome of 2-y-old HEU and HUU children from Belgium, Canada, and South Africa to test the hypothesis that region-specific immune alterations directly correlate to differences in their stool microbiomes. We did not detect a universal immune or microbiome signature underlying differences between HEU versus HUU that was applicable to all children. But as hypothesized, population-specific differences in stool microbiomes were readily detected and included reduced abundances of short-chain fatty acid-producing bacteria in Canadian HEU children. Furthermore, we did not identify innate immune-microbiome associations that distinguished HEU from HUU children in any population. These findings suggest that maternal HIV infection is independently associated with differences in both innate immunity and the stool microbiome in a biogeographical population-specific way.


Subject(s)
Gastrointestinal Microbiome/immunology , HIV Infections/immunology , Immunity, Innate , Belgium , Canada , Child, Preschool , Cohort Studies , Feces/microbiology , Female , Geography , HIV Infections/microbiology , Humans , Infant , Male , South Africa
18.
Clin Chem ; 66(8): 1063-1071, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32705124

ABSTRACT

BACKGROUND: HEARTBiT is a whole blood-based gene profiling assay using the nucleic acid counting NanoString technology for the exclusionary diagnosis of acute cellular rejection in heart transplant patients. The HEARTBiT score measures the risk of acute cellular rejection in the first year following heart transplant, distinguishing patients with stable grafts from those at risk for acute cellular rejection. Here, we provide the analytical performance characteristics of the HEARTBiT assay and the results on pilot clinical validation. METHODS: We used purified RNA collected from PAXgene blood samples to evaluate the characteristics of a 12-gene panel HEARTBiT assay, for its linearity range, quantitative bias, precision, and reproducibility. These parameters were estimated either from serial dilutions of individual samples or from repeated runs on pooled samples. RESULTS: We found that all 12 genes showed linear behavior within the recommended assay input range of 125 ng to 500 ng of purified RNA, with most genes showing 3% or lower quantitative bias and around 5% coefficient of variation. Total variation resulting from unique operators, reagent lots, and runs was less than 0.02 units standard deviation (SD). The performance of the analytically validated assay (AUC = 0.75) was equivalent to what we observed in the signature development dataset. CONCLUSION: The analytical performance of the assay within the specification input range demonstrated reliable quantification of the HEARTBiT score within 0.02 SD units, measured on a 0 to 1 unit scale. This assay may therefore be of high utility in clinical validation of HEARTBiT in future biomarker observational trials.


Subject(s)
Gene Expression Profiling/methods , Graft Rejection/diagnosis , Heart Transplantation/adverse effects , RNA/blood , Adult , Biomarkers/blood , Female , Humans , Limit of Detection , Male , Middle Aged , Pilot Projects , Prognosis , Reproducibility of Results
19.
Front Immunol ; 11: 1061, 2020.
Article in English | MEDLINE | ID: mdl-32574262

ABSTRACT

The global pandemic of COVID-19 cases caused by infection with SARS-CoV-2 is ongoing, with no approved antiviral intervention. We describe here the effects of treatment with interferon (IFN)-α2b in a cohort of confirmed COVID-19 cases in Wuhan, China. In this uncontrolled, exploratory study, 77 adults hospitalized with confirmed COVID-19 were treated with either nebulized IFN-α2b (5 mU b.i.d.), arbidol (200 mg t.i.d.) or a combination of IFN-α2b plus arbidol. Serial SARS-CoV-2 testing along with hematological measurements, including cell counts, blood biochemistry and serum cytokine levels, and temperature and blood oxygen saturation levels, were recorded for each patient during their hospital stay. Treatment with IFN-α2b with or without arbidol significantly reduced the duration of detectable virus in the upper respiratory tract and in parallel reduced duration of elevated blood levels for the inflammatory markers IL-6 and CRP. These findings suggest that IFN-α2b should be further investigated as a therapy in COVID-19 cases.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Interferon-alpha/therapeutic use , Pneumonia, Viral/drug therapy , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19 , China , Cohort Studies , Comorbidity , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Cytokines/blood , Drug Therapy, Combination , Female , Humans , Indoles/therapeutic use , Interferon alpha-2 , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Sex Factors
20.
Can J Cardiol ; 36(8): 1217-1227, 2020 08.
Article in English | MEDLINE | ID: mdl-32553820

ABSTRACT

BACKGROUND: Nine mRNA transcripts associated with acute cellular rejection (ACR) in previous microarray studies were ported to the clinically amenable NanoString nCounter platform. Here we report the diagnostic performance of the resulting blood test to exclude ACR in heart allograft recipients: HEARTBiT. METHODS: Blood samples for transcriptomic profiling were collected during routine post-transplantation monitoring in 8 Canadian transplant centres participating in the Biomarkers in Transplantation initiative, a large (n = 1622) prospective observational study conducted between 2009 and 2014. All adult cardiac transplant patients were invited to participate (median age = 56 [17 to 71]). The reference standard for rejection status was histopathology grading of tissue from endomyocardial biopsy (EMB). All locally graded ISHLT ≥ 2R rejection samples were selected for analysis (n = 36). ISHLT 1R (n = 38) and 0R (n = 86) samples were randomly selected to create a cohort approximately matched for site, age, sex, and days post-transplantation, with a focus on early time points (median days post-transplant = 42 [7 to 506]). RESULTS: ISHLT ≥ 2R rejection was confirmed by EMB in 18 and excluded in 92 samples in the test set. HEARTBiT achieved 47% specificity (95% confidence interval [CI], 36%-57%) given ≥ 90% sensitivity, with a corresponding area under the receiver operating characteristic curve of 0.69 (95% CI, 0.56-0.81). CONCLUSIONS: HEARTBiT's diagnostic performance compares favourably to the only currently approved minimally invasive diagnostic test to rule out ACR, AlloMap (CareDx, Brisbane, CA) and may be used to inform care decisions in the first 2 months post-transplantation, when AlloMap is not approved, and most ACR episodes occur.


Subject(s)
Graft Rejection/genetics , Heart Transplantation , Myocardium/pathology , RNA, Messenger/genetics , Transcriptome/genetics , Acute Disease , Allografts , Biopsy , Female , Humans , Male , Middle Aged , Prospective Studies , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...