Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387469

ABSTRACT

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacokinetics , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Mas , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
Cancer Discov ; 11(5): 1118-1137, 2021 05.
Article in English | MEDLINE | ID: mdl-33431496

ABSTRACT

Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC-regulated gene expression. In AR-SV-driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. SIGNIFICANCE: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.See related commentary by Rasool et al., p. 1011.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Imidazoles/therapeutic use , Oxazoles/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , p300-CBP Transcription Factors/antagonists & inhibitors , Androgen Receptor Antagonists/pharmacology , Animals , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Humans , Imidazoles/pharmacology , Male , Mice , Oxazoles/pharmacology , Xenograft Model Antitumor Assays
3.
J Med Chem ; 61(11): 4978-4992, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29775310

ABSTRACT

Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.


Subject(s)
Biocatalysis/drug effects , Drug Discovery , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Humans , Mice , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 3/chemistry , Models, Molecular , Phosphorylation/drug effects , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics
4.
Article in English | MEDLINE | ID: mdl-29439966

ABSTRACT

The antifungal effects of the novel triazole PC1244, designed for topical or inhaled administration, against Aspergillus fumigatus were tested in a range of in vitro and in vivo studies. PC1244 demonstrated potent antifungal activities against clinical A. fumigatus isolates (n = 96) with a MIC range of 0.016 to 0.25 µg/ml, whereas the MIC range for voriconazole was 0.25 to 0.5 µg/ml. PC1244 was a strong tight-binding inhibitor of recombinant A. fumigatus CYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis in A. fumigatus with a 50% inhibitory concentration of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC range, <0.0078 to 2 µg/ml), especially Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae PC1244 also proved to be quickly absorbed into both A. fumigatus hyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (minimum fungicidal concentration, 2 µg/ml) which indicated that it was 8-fold more potent than voriconazole. In vivo, once-daily intranasal administration of PC1244 (3.2 to 80 µg/ml) to temporarily neutropenic, immunocompromised mice 24 h after inoculation with itraconazole-susceptible A. fumigatus substantially reduced the fungal load in the lung, the galactomannan concentration in serum, and circulating inflammatory cytokine levels. Furthermore, 7 days of extended prophylaxis with PC1244 showed in vivo effects superior to those of 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment of A. fumigatus infection in the lungs of humans.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillus fumigatus/drug effects , Azoles/pharmacology , Cytochrome P-450 Enzyme System/genetics , Fungal Proteins/genetics , Triazoles/pharmacology , Administration, Intranasal , Animals , Aspergillus fumigatus/isolation & purification , Candida/drug effects , Cryptococcus/drug effects , Cytokines/blood , Drug Resistance, Fungal , Epithelial Cells/metabolism , Ergosterol/biosynthesis , Fungal Proteins/antagonists & inhibitors , Galactose/analogs & derivatives , Humans , Hyphae/metabolism , Mannans/blood , Mice , Microbial Sensitivity Tests , Rhizopus/drug effects , Trichophyton/drug effects , Voriconazole/pharmacology
5.
Org Lett ; 19(7): 1918-1921, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28322059

ABSTRACT

Deprotonation of secondary alkane nitriles with nBuLi and addition to aryl imines gives kinetic anti-ß-aminonitriles. Use of LHMDS allows reversible protonation of the reaction intermediate to give syn-ß-aminonitriles. The pure diastereosiomers can be isolated in good yields, and the mechanism was elucidated.

6.
Article in English | MEDLINE | ID: mdl-28223388

ABSTRACT

The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 µM and 0.22 µM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 µg/ml, while those of voriconazole ranged from 0.064 to 4 µg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 µg/ml, whereas voriconazole (0.019 to >1 µg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 µg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 µg/mouse, while posaconazole showed similar effects (44%) at 14 µg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillus fumigatus/drug effects , Benzamides/pharmacology , Fungal Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Aspergillosis/microbiology , Aspergillus fumigatus/isolation & purification , Cells, Cultured , Cytochrome P-450 Enzyme System , Humans , Itraconazole/pharmacology , Mice , Microbial Sensitivity Tests , Voriconazole/pharmacology
7.
Org Biomol Chem ; 14(35): 8270-7, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27527672

ABSTRACT

A concise, high yielding and structurally divergent synthesis of complex 1,2,3,4-tetrahydroquinoxalines with excellent diastereoselectivity is described. A wide array of nitroalkenes and imines derived from commercially available aromatic aldehydes and 2-chloroanalines were subjected to a key reductive conjugate addition nitro-Mannich reaction to give diastereomerically pure ß-nitro amines. Sequential reduction of the nitro function followed by Pd-catalyzed intramolecular N-arylation of the resultant primary amine onto the 2-chloroanailine gives highly substituted 1,2,3,4-tetrahydroquinoxalines. Non basic imines were found to participate better in the nitro-Mannich reaction if the stronger acid methanesulfonic acid was used to promote the reaction. The 3 step reaction sequence should be useful for the array synthesis of drug like scaffolds.

8.
Org Biomol Chem ; 13(1): 170-7, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25351774

ABSTRACT

A conjugate addition nitro-Mannich reaction followed by nitro reduction and intramolecular N-arylation gives diastereomerically pure substituted 1,2-diamine containing indolines. Placing the N-arylation cyclisation handle on the imine precursor derived from an ortho-bromine substituted aromatic aldehyde gave the corresponding ß-nitroamines in 55-72% yields as single diastereoisomers. Nitro reduction was effected with modified quantities of Zn/HCl and a subsequent Pd(0) catalysed Buchwald Hartwig cyclisation gave indoline products in 40-70% yields as single diastereoisomers.


Subject(s)
Diamines/chemistry , Diamines/chemical synthesis , Indoles/chemistry , Nitro Compounds/chemistry , Chemistry Techniques, Synthetic , Cyclization , Palladium/chemistry , Stereoisomerism , Substrate Specificity
9.
Chemistry ; 16(3): 1053-60, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-19938004

ABSTRACT

A practical asymmetric 1,2-addition of functionalised arylzinc halides to aromatic and aliphatic aldehydes is described by the use of aminoalcohol catalysis in the presence of AlMe(3). The process is simple to carry out, uses only commercially available reagents/ligands and provides moderate to good (80-96 % ee) enantioselectivities for a wide range of substrates. Either commercial ArZnX reagents or those prepared in situ from low cost aryl bromides can be used. In the latter case electrophilic functional groups are tolerated (CO(2)Et, CN). The reaction relies on rapid exchange between ArZnX and AlMe(3) to generate mixed organometallic species that lead to the formation of a key intermediate that is distinctly different from the classic "anti" transition states of Noyori. NMR monitoring and related experiments have been used to probe the validity of the proposed selective transition state.


Subject(s)
Aldehydes/chemistry , Aluminum/chemistry , Organometallic Compounds/chemistry , Aldehydes/chemical synthesis , Catalysis , Stereoisomerism
10.
Bioorg Med Chem ; 17(12): 4035-46, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19349185

ABSTRACT

Combinatorial chemistry and high throughput screening have had a profound effect upon the way in which agrochemical companies conduct their lead discovery research. The article reviews recent applications of combinatorial synthesis in the lead discovery process for new fungicides, herbicides and insecticides. The role and importance of bioavailability guidelines, natural products, privileged structures, virtual screening and X-ray crystallographic protein structures on the design of solid- and solution-phase compound libraries is discussed and illustrated.


Subject(s)
Agrochemicals/chemistry , Combinatorial Chemistry Techniques/methods , Agrochemicals/chemical synthesis , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Biological Availability , Computer-Aided Design , Herbicides/chemical synthesis , Herbicides/chemistry , Insecticides/chemical synthesis , Insecticides/chemistry , Small Molecule Libraries , Structure-Activity Relationship
11.
Chem Commun (Camb) ; (38): 3945-7, 2007 Oct 14.
Article in English | MEDLINE | ID: mdl-17896041

ABSTRACT

Addition of AlMe3 to commercial THF solutions of RZnX (R = aryl, functionalised aryl, vinyl; X = Br, I) simultaneously promotes Schlenk equilibria (leading to competent nucleophiles) and the formation of an Al-Zn-ligand catalyst delivering 80-90% ee for Ar(1)CH(OH)Ar(2) formation from aldehydes.


Subject(s)
Aldehydes/chemistry , Aluminum/chemistry , Organometallic Compounds/chemistry , Zinc Compounds/chemistry , Bromides/chemistry , Catalysis , Iodides/chemistry , Molecular Conformation
12.
Chemistry ; 13(9): 2462-72, 2007.
Article in English | MEDLINE | ID: mdl-17285664

ABSTRACT

The presence of promoted Schlenk equilibria for organozinc halide species has been explicitly demonstrated by 13C NMR studies. Thus, addition of methylaluminoxane (MeAlO)n, MAO, to RZnX (R=Et, Bn, ArCH2, (CH2)3CO2Et; X=Cl, Br) leads to the formation of ZnR2 and ZnX2MAO. For EtZnCl, equilibration of ZnEt2 and ZnX2MAO is rapid at -35 degrees C; a K value of 0.19 M-1 indicates the equilibrium favours ZnEt2 (0.75-3.0 equiv MAO). Use of RZnX/MAO mixtures allows copper-catalysed 1,4-addition to 2-cyclohexenone to be achieved, but a competing cascade reaction (two subsequent Michael additions and an intramolecular aldol reaction) leads to novel tetracyclic by-products (characterised crystallographically in one case). Activation of EtZnCl is also achieved by ZnMe2 addition and the presence of intermediate EtZnMe was observed by 13C NMR spectroscopy (at equilibrium, K approximately 1). Asymmetric conjugate addition in this system can be realised (up to 92% ee for additions to 2-cyclohexenone).

SELECTION OF CITATIONS
SEARCH DETAIL
...