Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(10): 4403-4423, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28471663

ABSTRACT

LOXL2 catalyzes the oxidative deamination of ε-amines of lysine and hydroxylysine residues within collagen and elastin, generating reactive aldehydes (allysine). Condensation with other allysines or lysines drives the formation of inter- and intramolecular cross-linkages, a process critical for the remodeling of the ECM. Dysregulation of this process can lead to fibrosis, and LOXL2 is known to be upregulated in fibrotic tissue. Small-molecules that directly inhibit LOXL2 catalytic activity represent a useful option for the treatment of fibrosis. Herein, we describe optimization of an initial hit 2, resulting in identification of racemic-trans-(3-((4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl)oxy)phenyl)(3-fluoro-4-hydroxypyrrolidin-1-yl)methanone 28, a potent irreversible inhibitor of LOXL2 that is highly selective over LOX and other amine oxidases. Oral administration of 28 significantly reduced fibrosis in a 14-day mouse lung bleomycin model. The (R,R)-enantiomer 43 (PAT-1251) was selected as the clinical compound which has progressed into healthy volunteer Phase 1 trials, making it the "first-in-class" small-molecule LOXL2 inhibitor to enter clinical development.


Subject(s)
Amino Acid Oxidoreductases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Administration, Oral , Amino Acid Oxidoreductases/metabolism , Animals , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/therapeutic use , Fibrosis , Halogenation , Humans , Lung/drug effects , Lung/enzymology , Lung/pathology , Lung Diseases/drug therapy , Lung Diseases/enzymology , Lung Diseases/pathology , Male , Methylation , Mice, Inbred C57BL , Models, Molecular , Pyridines/administration & dosage , Pyridines/therapeutic use , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 360(1): 1-13, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27754931

ABSTRACT

Autotaxin (ATX) is a secreted glycoprotein that converts lysophosphatidylcholine (LPC) to the bioactive phospholipid lysophosphatidic acid (LPA) and is the major enzyme generating circulating LPA. Inhibition of LPA signaling has profound antifibrotic effects in multiple organ systems, including lung, kidney, skin, and peritoneum. However, other LPA-generating pathways exist, and the role of ATX in localized tissue LPA production and fibrosis remains unclear and controversial. In this study, we describe the preclinical pharmacologic, pharmacokinetic, and pharmacodynamic properties of a novel small-molecule ATX inhibitor, PAT-505 [3-((6-chloro-2-cyclopropyl-1-(1-ethyl-1H-pyrazol-4-yl)-7-fluoro-1H-indol-3-yl) thio)-2-fluorobenzoic acid sodium salt]. PAT-505 is a potent, selective, noncompetitive inhibitor that displays significant inhibition of ATX activity in plasma and liver tissue after oral administration. When dosed therapeutically in a Stelic Mouse Animal Model of nonalcoholic steatohepatitis (NASH), PAT-505 treatment resulted in a small but significant improvement in fibrosis with only minor improvements in hepatocellular ballooning and hepatic inflammation. In a choline-deficient, high-fat diet model of NASH, therapeutic treatment with PAT-505 robustly reduced liver fibrosis with no significant effect on steatosis, hepatocellular ballooning, or inflammation. These data demonstrate that inhibiting autotaxin is antifibrotic and may represent a novel therapeutic approach for the treatment of multiple fibrotic liver diseases, including NASH.


Subject(s)
Enzyme Inhibitors/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/enzymology , Phosphoric Diester Hydrolases/metabolism , Piperazines/pharmacology , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Piperazines/pharmacokinetics , Piperazines/therapeutic use
3.
Bioorg Med Chem ; 15(11): 3783-800, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17399986

ABSTRACT

The integrin alpha(v)beta(3), vitronectin receptor, is expressed in a number of cell types and has been shown to mediate adhesion of osteoclasts to bone matrix, vascular smooth muscle cell migration, and angiogenesis. We recently disclosed the discovery of a tripeptide Arg-Gly-Asp (RGD) mimic, which has been shown to be a potent inhibitor of the integrin alpha(v)beta(3) and has excellent anti-angiogenic properties including its suppression of tumor growth in animal models. In other investigations involving RGD mimics, only compounds containing the S-isomers of the beta-amino acids have been shown to be potent. We were surprised to find the potencies of analogs containing enantiomerically pure S-isomers of beta-amino acids which were only marginally better than the corresponding racemic mixtures. We therefore synthesized RGD mimics containing R-isomers of beta-amino acids and found them to be relatively potent inhibitors of alpha(v)beta(3). One of the compounds was examined in tumor models in mice and has been shown to significantly reduce the rate of growth and the size of tumors.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Integrin alphaVbeta3/antagonists & inhibitors , Molecular Mimicry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Amino Acids/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Colonic Neoplasms , Hypercalcemia/chemically induced , Isomerism , Melanoma , Mice , Mice, Inbred Strains , Oligopeptides/pharmacokinetics , Skin Neoplasms , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem ; 15(10): 3390-412, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17387018

ABSTRACT

The integrin alpha(v)beta(3) is expressed in a number of cell types and is thought to play a major role in several pathological conditions. Various small molecules that inhibit the integrin have been shown to suppress tumor growth and retinal angiogenesis. The tripeptide Arg-Gly-Asp (RGD), a common binding motif in several ligands that bind to alpha(v)beta(3), has been depeptidized and optimized in our efforts toward discovering a small molecule inhibitor. We recently disclosed the synthesis and biological activity of several small molecules that did not contain any peptide bond and mimic the tripeptide RGD. The phenethyl group in one of the lead compounds was successfully replaced with a cyclopropyl moiety. The new lead compound was optimized for potency, selectivity, and for its ADME properties. We describe herein the discovery, synthesis, and optimization of cyclopropyl containing analogs that are potent and selective inhibitors of alpha(v)beta(3).


Subject(s)
Acetates/chemical synthesis , Acetates/pharmacology , Integrin alphaVbeta3/antagonists & inhibitors , Naphthyridines/chemical synthesis , Naphthyridines/pharmacology , Animals , Area Under Curve , Cell Line , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Indicators and Reagents , Male , Mice , Rats , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Transfection
5.
Bioorg Med Chem Lett ; 16(12): 3156-61, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16621534

ABSTRACT

We describe a series of pyrazole and isoxazole analogs as antagonists of the alpha(v)beta3 receptor. Compounds showed low to sub-nanomolar potency against alpha(v)beta3, as well as good selectivity against alpha(IIb)beta3. In HT29 cells, most analogs also demonstrated significant selectivity against alpha(v)beta6. Several compounds showed good pharmacokinetic properties in rats, in addition to anti-angiogenic activity in a mouse corneal micropocket model. Compounds were synthesized in a straightforward manner from readily available glutarate precursors.


Subject(s)
Integrin alphaVbeta3/antagonists & inhibitors , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Animals , Cell Line , Humans , Integrin alphaVbeta3/metabolism , Isoxazoles/chemistry , Isoxazoles/pharmacokinetics , Mice , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 16(4): 845-9, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16303301

ABSTRACT

We describe a series of 2,5 thiazole containing compounds, which are potent antagonists of the integrin alpha(v)beta3 and show selectivity relative to the other integrins, such as alpha(IIb)beta3 and alpha(v)beta6. These analogs were demonstrated to have high bioavailability relative to other relative heterocyclic analogs.


Subject(s)
Butyrates/chemical synthesis , Butyrates/pharmacokinetics , Integrin alphaVbeta3/antagonists & inhibitors , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Administration, Oral , Animals , Antigens, Neoplasm , Biological Availability , Butyrates/administration & dosage , Dogs , Drug Evaluation, Preclinical , Haplorhini , Integrins/antagonists & inhibitors , Molecular Structure , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Rats , Structure-Activity Relationship , Thiazoles/administration & dosage
7.
Clin Exp Metastasis ; 21(2): 129-38, 2004.
Article in English | MEDLINE | ID: mdl-15168730

ABSTRACT

Integrins expressed on endothelial cells modulate cell migration and survival during angiogenesis. Integrins expressed on carcinoma cells potentiate metastasis by facilitating invasion and movement across blood vessels. We describe the activities of two synthetic low-molecular-weight peptidomimetics of the ligand amino acid sequence arg-gly-asp (RGD) in integrin-based functional assays in vitro. We also evaluate efficacy and potential mechanisms of action in models of both spontaneous and experimental metastasis. Broad-spectrum potency against the family of alpha v subunit-containing integrins was observed, with significantly less potency against alpha5beta1 and alpha(IIb)beta3. Both endothelial and tumor cell migration mediated by alpha(v)beta3 was inhibited, whereas proliferation of endothelial cells but not tumor cells was diminished. Continuous infusion of compound by minipumps or oral administration twice daily significantly reduced metastatic tumor burden in the lungs of mice despite no reduction in growth of 435/HAL primary tumors, and only a slight reduction in tumor cells detected in circulating blood. Delaying treatment in this model until after extensive dissemination of tumor cells to the lungs had occurred, and after primary tumor resection, still produced significant efficacy. Conversely, administration of the agent for only the first 18 h after tumor-cell inoculation into the tail vein also resulted in decreased metastases observed after several weeks. These data suggest these compounds or their relatives have potential to interfere with both early and late steps of metastasis involving tumor and endothelial cell functions. Furthermore, the metastatic process can be effectively inhibited independently of primary tumor growth using integrin antagonists.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Carcinoma, Ductal/secondary , Dipeptides/therapeutic use , Integrin alphaVbeta3/antagonists & inhibitors , Lung Neoplasms/secondary , Neoplasm Proteins/antagonists & inhibitors , Organic Chemicals/therapeutic use , Pyrimidines/therapeutic use , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Carcinoma, Ductal/drug therapy , Carcinoma, Ductal/pathology , Carcinoma, Ductal/prevention & control , Carcinoma, Ductal/surgery , Cell Division/drug effects , Cell Line, Tumor/transplantation , Cell Movement/drug effects , Colonic Neoplasms/pathology , Dipeptides/administration & dosage , Dipeptides/pharmacology , Drug Administration Schedule , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Female , Humans , Infusion Pumps, Implantable , Lung Neoplasms/drug therapy , Lung Neoplasms/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplastic Cells, Circulating , Oligopeptides , Organic Chemicals/administration & dosage , Organic Chemicals/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem Lett ; 14(6): 1471-6, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-15006384

ABSTRACT

We describe a series of conformationally-restricted cinnamic acid peptidomimetics as well as several cinnamic acid isosteres, including 3-phenylpropionic acids, 2-amino-3-phenylpropionic acids, phenoxyacetic acids and 2-phenylcyclopropylcarboxylic acids. Several analogues demonstrated low to sub-nanomolar potencies against alpha(v)beta(3) and greater than 200-fold selectivity against the other beta(3) integrin alpha(IIb)beta(3). In whole 293 cells, many of these analogues also showed modest selectivity against other alpha(v) integrins such as alpha(v)beta(1) and alpha(v)beta(5). These compounds were synthesized from readily available starting materials using either Heck or Mitsunobu coupling conditions.


Subject(s)
Cinnamates/chemical synthesis , Cinnamates/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Integrin alphaVbeta3/metabolism , Humans , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...