Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(5): 99, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598016

ABSTRACT

KEY MESSAGE: We find evidence of selection for local adaptation and extensive genotype-by-environment interaction in the potato National Chip Processing Trial (NCPT). We present a novel method for dissecting the interplay between selection, local adaptation and environmental response in plant breeding schemes. Balancing local adaptation and the desire for widely adapted cultivars is challenging for plant breeders and makes genotype-by-environment interactions (GxE) an important target of selection. Selecting for GxE requires plant breeders to evaluate plants across multiple environments. One way breeders have accomplished this is to test advanced materials across many locations. Public potato breeders test advanced breeding material in the National Chip Processing Trial (NCPT), a public-private partnership where breeders from ten institutions submit advanced chip lines to be evaluated in up to ten locations across the country. These clones are genotyped and phenotyped for important agronomic traits. We used these data to interrogate the NCPT for GxE. Further, because breeders submitting clones to the NCPT select in a relatively small geographic range for the first 3 years of selection, we examined these data for evidence of incidental selection for local adaptation, and the alleles underlying it, using an environmental genome-wide association study (envGWAS). We found genomic regions associated with continuous environmental variables and discrete breeding programs, as well as regions of the genome potentially underlying GxE for yield.


Subject(s)
Gene-Environment Interaction , Genome-Wide Association Study , Plant Breeding , Genotype , Phenotype
2.
Cell Genom ; 3(6): 100343, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37388910

ABSTRACT

Potato is one of the most important food crops in the world and, in contrast to other staples, has not seen large improvements in yield. Agha, Shannon, and Morrell preview an article recently published in Cell, "Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding," which advances potato breeding strategies via a genetic approach.

3.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35026436

ABSTRACT

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Subject(s)
Solanum tuberosum , Tetraploidy , Alleles , Chromosomes , Plant Breeding , Proteome/genetics , Solanum tuberosum/genetics , Transcriptome/genetics
4.
Int J Mol Sci ; 21(16)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784357

ABSTRACT

Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.


Subject(s)
Adaptation, Physiological , Cell Wall/metabolism , Persea/embryology , Persea/physiology , Plant Somatic Embryogenesis Techniques , Propanols/metabolism , Stress, Physiological , Cell Wall/ultrastructure , Metabolomics , Models, Biological , Persea/ultrastructure , Phenotype , Plant Proteins/metabolism , Polyphenols/metabolism , Principal Component Analysis , Proteomics
5.
Conserv Genet ; 21(1): 137-148, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32607099

ABSTRACT

Inbreeding poses a real or potential threat to nearly every species of conservation concern. Inbreeding leads to loss of diversity at the individual level, which can cause inbreeding depression, and at the population level, which can hinder ability to respond to a changing environment. In closed populations such as endangered species and ex situ breeding programs, some degree of inbreeding is inevitable. It is therefore vital to understand how different patterns of breeding and inbreeding can affect fitness in real animals. Domestic dogs provide an excellent model, showing dramatic variation in degree of inbreeding and in lifespan, an important aspect of fitness that is known to be impacted by inbreeding in other species. There is a strong negative correlation between body size and lifespan in dogs, but it is unknown whether the higher rate of aging in large dogs is due to body size per se or some other factor associated with large size. We used dense genome-wide SNP array data to calculate average inbreeding for over 100 dog breeds based on autozygous segment length and found that large breeds tend to have higher coefficients of inbreeding than small breeds. We then used data from the Veterinary medical Database and other published sources to estimate life expectancies for pure and mixed breed dogs. When controlling for size, variation in inbreeding was not associated with life expectancy across breeds. When comparing mixed versus purebred dogs, however, mixed breed dogs lived about 1.2 years longer on average than size-matched purebred dogs. Furthermore, individual pedigree coefficients of inbreeding and lifespans for over 9000 golden retrievers showed that inbreeding does negatively impact lifespan at the individual level. Registration data from the American Kennel Club suggest that the molecular inbreeding patterns observed in purebred dogs result from specific breeding practices and/or founder effects and not the current population size. Our results suggest that recent inbreeding, as reflected in variation within a breed, is more likely to affect fitness than historic inbreeding, as reflected in variation among breeds. Our results also indicate that occasional outcrosses, as in mixed breed dogs, can have a substantial positive effect on fitness.

6.
PLoS Genet ; 15(9): e1008003, 2019 09.
Article in English | MEDLINE | ID: mdl-31525180

ABSTRACT

Genomic resources for the domestic dog have improved with the widespread adoption of a 173k SNP array platform and updated reference genome. SNP arrays of this density are sufficient for detecting genetic associations within breeds but are underpowered for finding associations across multiple breeds or in mixed-breed dogs, where linkage disequilibrium rapidly decays between markers, even though such studies would hold particular promise for mapping complex diseases and traits. Here we introduce an imputation reference panel, consisting of 365 diverse, whole-genome sequenced dogs and wolves, which increases the number of markers that can be queried in genome-wide association studies approximately 130-fold. Using previously genotyped dogs, we show the utility of this reference panel in identifying potentially novel associations, including a locus on CFA20 significantly associated with cranial cruciate ligament disease, and fine-mapping for canine body size and blood phenotypes, even when causal loci are not in strong linkage disequilibrium with any single array marker. This reference panel resource will improve future genome-wide association studies for canine complex diseases and other phenotypes.


Subject(s)
Genome-Wide Association Study/methods , Genomics/methods , Whole Genome Sequencing/methods , Animals , Breeding , Chromosome Mapping/methods , Dogs/genetics , Genome/genetics , Genotype , Linkage Disequilibrium/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
7.
J Mol Recognit ; 32(1): e2754, 2019 01.
Article in English | MEDLINE | ID: mdl-30033658

ABSTRACT

Plants, as sessile organisms, have acquired through evolution sophisticated regulatory signal pathways to overcome external variable factors during each stage of the life cycle. Among these regulatory signals, two pathways in particular, reactive oxygen species and reactive nitrogen species, have become of significant interest in several aspects of plant biology, underpinning these molecules as critical regulators during development, cellular differentiation, and plant-pathogen interaction. Recently, redox posttranslational modifications (PTM), such as S-nitrosylation on cysteine residues and tyrosine nitration, have shed light on multiple protein targets, as they are associated with signal networks/downstream metabolic pathways, capable of transducing the imbalance of redox hemostasis and consequently redirecting the biochemical status under stress conditions. However, most of the redox PTM have been studied only in the intracellular compartment, providing limited information concerning redox PTM in the extracellular matrix of plant cells. Nevertheless, recent studies have indicated the plausibility of redox PTM in extracellular proteins, including cell wall associated proteins. Accordingly, in this review, we endeavor to examine evidence of redox PTM supported by mass spectrometry data in the intracellular and extracellular space in plant cells. As a further example, we focus the last section of this review on illustrating, using molecular dynamics simulation, the effect of S-nitrosylation on the structural conformation of well-known cell wall-associated proteins including pectin methylesterase and xyloglucan endo-transglycosylases.


Subject(s)
Plant Proteins/metabolism , Plants/metabolism , Protein Processing, Post-Translational , Cell Wall/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation, Plant , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction
8.
PLoS One ; 13(6): e0198754, 2018.
Article in English | MEDLINE | ID: mdl-29889854

ABSTRACT

Dingoes play a strong role in Australia's ecological framework as the apex predator but are under threat from hybridization and agricultural control programs. Government legislation lists the conservation of the dingo as an important aim, yet little is known about the biogeography of this enigmatic canine, making conservation difficult. Mitochondrial and Y chromosome DNA studies show evidence of population structure within the dingo. Here, we present the data from Illumina HD canine chip genotyping for 23 dingoes from five regional populations, and five New Guinea Singing Dogs to further explore patterns of biogeography using genome-wide data. Whole genome single nucleotide polymorphism (SNP) data supported the presence of three distinct dingo populations (or ESUs) subject to geographical subdivision: southeastern (SE), Fraser Island (FI) and northwestern (NW). These ESUs should be managed discretely. The FI dingoes are a known reservoir of pure, genetically distinct dingoes. Elevated inbreeding coefficients identified here suggest this population may be genetically compromised and in need of rescue; current lethal management strategies that do not consider genetic information should be suspended until further data can be gathered. D statistics identify evidence of historical admixture or ancestry sharing between southeastern dingoes and South East Asian village dogs. Conservation efforts on mainland Australia should focus on the SE dingo population that is under pressure from domestic dog hybridization and high levels of lethal control. Further data concerning the genetic health, demographics and prevalence of hybridization in the SE and FI dingo populations is urgently needed to develop evidence based conservation and management strategies.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Australia , Cluster Analysis , Conservation of Natural Resources , Dogs , Female , Genotype , Hybridization, Genetic , Inbreeding , Male , Phylogeny , Phylogeography , Principal Component Analysis
9.
PLoS One ; 12(10): e0186331, 2017.
Article in English | MEDLINE | ID: mdl-29053721

ABSTRACT

Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD) remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens) and dogs (C. familiaris). Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1) a variant associated with XX DSD in the canine model and 2) gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS) and whole genome sequencing (WGS), we identified a variant on C. familiaris autosome 9 (CFA9) that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq) in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.


Subject(s)
Chromosome Aberrations , Down-Regulation , Thrombospondins/genetics , Animals , Dogs , Genome-Wide Association Study
11.
Nat Commun ; 7: 10460, 2016 01 22.
Article in English | MEDLINE | ID: mdl-26795439

ABSTRACT

The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies.


Subject(s)
Dog Diseases/genetics , Dogs/genetics , Animals , Body Size , Dogs/classification , Dogs/growth & development , Female , Genome-Wide Association Study , Genotype , Humans , Male , Phenotype , Quantitative Trait Loci
12.
Proc Natl Acad Sci U S A ; 112(44): 13639-44, 2015 11 03.
Article in English | MEDLINE | ID: mdl-26483491

ABSTRACT

Dogs were the first domesticated species, originating at least 15,000 y ago from Eurasian gray wolves. Dogs today consist primarily of two specialized groups--a diverse set of nearly 400 pure breeds and a far more populous group of free-ranging animals adapted to a human commensal lifestyle (village dogs). Village dogs are more genetically diverse and geographically widespread than purebred dogs making them vital for unraveling dog population history. Using a semicustom 185,805-marker genotyping array, we conducted a large-scale survey of autosomal, mitochondrial, and Y chromosome diversity in 4,676 purebred dogs from 161 breeds and 549 village dogs from 38 countries. Geographic structure shows both isolation and gene flow have shaped genetic diversity in village dog populations. Some populations (notably those in the Neotropics and the South Pacific) are almost completely derived from European stock, whereas others are clearly admixed between indigenous and European dogs. Importantly, many populations--including those of Vietnam, India, and Egypt-show minimal evidence of European admixture. These populations exhibit a clear gradient of short--range linkage disequilibrium consistent with a Central Asian domestication origin.


Subject(s)
Dogs/genetics , Genetics, Population , Animals , Animals, Domestic , Asia
13.
J Hered ; 105(4): 576-582, 2014.
Article in English | MEDLINE | ID: mdl-24683184

ABSTRACT

The prolamin-box binding factor1 (pbf1) gene encodes a transcription factor that controls the expression of seed storage protein (zein) genes in maize. Prior studies show that pbf1 underwent selection during maize domestication although how it affected trait change during domestication is unknown. To assay how pbf1 affects phenotypic differences between maize and teosinte, we compared nearly isogenic lines (NILs) that differ for a maize versus teosinte allele of pbf1 Kernel weight for the teosinte NIL (162mg) is slightly but significantly greater than that for the maize NIL (156mg). RNAseq data for developing kernels show that the teosinte allele of pbf1 is expressed at about twice the level of the maize allele. However, RNA and protein assays showed no difference in zein profile between the two NILs. The lower expression for the maize pbf1 allele suggests that selection may have favored this change; however, how reduced pbf1 expression alters phenotype remains unknown. One possibility is that pbf1 regulates genes other than zeins and thereby is a domestication trait. The observed drop in seed weight associated with the maize allele of pbf1 is counterintuitive but could represent a negative pleiotropic effect of selection on some other aspect of kernel composition.


Subject(s)
Domestication , Transcription Factors/genetics , Zea mays/genetics , Zein/genetics , Alleles , Gene Expression Regulation, Plant , Genes, Plant , Phenotype , RNA, Messenger/genetics , RNA, Plant/genetics , Seeds/genetics , Seeds/physiology , Selection, Genetic
14.
PLoS Genet ; 9(6): e1003604, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23825971

ABSTRACT

A reduction in number and an increase in size of inflorescences is a common aspect of plant domestication. When maize was domesticated from teosinte, the number and arrangement of ears changed dramatically. Teosinte has long lateral branches that bear multiple small ears at their nodes and tassels at their tips. Maize has much shorter lateral branches that are tipped by a single large ear with no additional ears at the branch nodes. To investigate the genetic basis of this difference in prolificacy (the number of ears on a plant), we performed a genome-wide QTL scan. A large effect QTL for prolificacy (prol1.1) was detected on the short arm of chromosome 1 in a location that has previously been shown to influence multiple domestication traits. We fine-mapped prol1.1 to a 2.7 kb "causative region" upstream of the grassy tillers1 (gt1) gene, which encodes a homeodomain leucine zipper transcription factor. Tissue in situ hybridizations reveal that the maize allele of prol1.1 is associated with up-regulation of gt1 expression in the nodal plexus. Given that maize does not initiate secondary ear buds, the expression of gt1 in the nodal plexus in maize may suppress their initiation. Population genetic analyses indicate positive selection on the maize allele of prol1.1, causing a partial sweep that fixed the maize allele throughout most of domesticated maize. This work shows how a subtle cis-regulatory change in tissue specific gene expression altered plant architecture in a way that improved the harvestability of maize.


Subject(s)
Quantitative Trait Loci , Zea mays/genetics , Agriculture , Alleles , Gene Expression Regulation, Plant , Genome, Plant , Humans , Phenotype , Selection, Genetic
15.
Nat Genet ; 44(7): 808-11, 2012 Jun 03.
Article in English | MEDLINE | ID: mdl-22660546

ABSTRACT

Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.


Subject(s)
Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Genome, Plant , Zea mays/genetics , Breeding/methods , Evolution, Molecular , Metagenomics/methods , Polymorphism, Single Nucleotide , Selection, Genetic , Transcriptome/genetics
16.
Proc Natl Acad Sci U S A ; 109(28): E1913-21, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22711828

ABSTRACT

Teosinte, the progenitor of maize, is restricted to tropical environments in Mexico and Central America. The pre-Columbian spread of maize from its center of origin in tropical Southern Mexico to the higher latitudes of the Americas required postdomestication selection for adaptation to longer day lengths. Flowering time of teosinte and tropical maize is delayed under long day lengths, whereas temperate maize evolved a reduced sensitivity to photoperiod. We measured flowering time of the maize nested association and diverse association mapping panels in the field under both short and long day lengths, and of a maize-teosinte mapping population under long day lengths. Flowering time in maize is a complex trait affected by many genes and the environment. Photoperiod response is one component of flowering time involving a subset of flowering time genes whose effects are strongly influenced by day length. Genome-wide association and targeted high-resolution linkage mapping identified ZmCCT, a homologue of the rice photoperiod response regulator Ghd7, as the most important gene affecting photoperiod response in maize. Under long day lengths ZmCCT alleles from diverse teosintes are consistently expressed at higher levels and confer later flowering than temperate maize alleles. Many maize inbred lines, including some adapted to tropical regions, carry ZmCCT alleles with no sensitivity to day length. Indigenous farmers of the Americas were remarkably successful at selecting on genetic variation at key genes affecting the photoperiod response to create maize varieties adapted to vastly diverse environments despite the hindrance of the geographic axis of the Americas and the complex genetic control of flowering time.


Subject(s)
Chromosome Mapping/methods , Plant Proteins/genetics , Repressor Proteins/genetics , Zea mays/genetics , Alleles , Chromosomes, Plant , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Genotype , Haplotypes , Mexico , Models, Genetic , Phenotype , Photoperiod , Plant Proteins/metabolism , Quantitative Trait Loci , Repressor Proteins/metabolism , Time Factors
17.
Nat Genet ; 44(6): 720-4, 2012 May 13.
Article in English | MEDLINE | ID: mdl-22581231

ABSTRACT

A key step during crop domestication is the loss of seed shattering. Here, we show that seed shattering in sorghum is controlled by a single gene, Shattering1 (Sh1), which encodes a YABBY transcription factor. Domesticated sorghums harbor three different mutations at the Sh1 locus. Variants at regulatory sites in the promoter and intronic regions lead to a low level of expression, a 2.2-kb deletion causes a truncated transcript that lacks exons 2 and 3, and a GT-to-GG splice-site variant in the intron 4 results in removal of the exon 4. The distributions of these non-shattering haplotypes among sorghum landraces suggest three independent origins. The function of the rice ortholog (OsSh1) was subsequently validated with a shattering-resistant mutant, and two maize orthologs (ZmSh1-1 and ZmSh1-5.1+ZmSh1-5.2) were verified with a large mapping population. Our results indicate that Sh1 genes for seed shattering were under parallel selection during sorghum, rice and maize domestication.


Subject(s)
Edible Grain/genetics , Genes, Plant , Base Sequence , Chromosome Mapping , Molecular Sequence Data , Mutation , Oryza/genetics , Protein Isoforms , Sorghum/genetics , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...