Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38790969

ABSTRACT

Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma antibodies from COVID-19 convalescents. These antibodies were found to hydrolyze the S-protein and corresponding oligopeptides. Our study shows that for antibodies with affinity to recombinant structural proteins of the SARS-CoV-2: S-protein, its fragment RBD and N-protein can only hydrolyze the corresponding protein substrates and are not cross-reactive. By using strict criteria, we have confirmed that this proteolytic activity is an intrinsic property of antibodies and is not caused by impurities co-eluting with them. This discovery suggests that natural proteolytic antibodies that hydrolyze proteins of the SARS-CoV-2 virus may have a positive impact on disease pathogenesis. It is also possible for these antibodies to work in combination with other antibodies that bind specific epitopes to enhance the process of virus neutralization.

2.
Antibodies (Basel) ; 12(4)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38131804

ABSTRACT

In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus. Perhaps this will contribute to understanding some of the processes that precede the emergence of a pandemic virus. We assessed the specificity and virus-neutralizing capacity of antibodies reacting with the nucleocapsid and spike proteins of SARS-CoV-2 in a set of serum samples collected in October and November 2019, before the first COVID-19 cases were documented in this region. Blood serum samples from 799 residents of several regions of Siberia, Russia, (the Altai Territory, Irkutsk, Kemerovo and Novosibirsk regions, the Republic of Altai, Buryatia, and Khakassia) were analyzed. Sera of non-infected donors were collected within a study of seasonal influenza in the Russian Federation. The sample collection sites were located near the flyways and breeding grounds of wild waterfowl. The performance of enzyme-linked immunosorbent assay (ELISA) for the collected sera included the usage of recombinant SARS-CoV-2 protein antigens: full-length nucleocapsid protein (CoVN), receptor binding domain (RBD) of S-protein and infection fragment of the S protein (S5-6). There were 183 (22.9%) sera reactive to the S5-6, 270 (33.8%) sera corresponding to the full-length N protein and 128 (16.2%) sera simultaneously reactive to both these proteins. Only 5 out of 799 sera had IgG antibodies reactive to the RBD. None of the sera exhibited neutralizing activity against the nCoV/Victoria/1/2020 SARS-CoV-2 strain in Vero E6 cell culture. The data obtained in this study suggest that some of the population of the analyzed regions of Russia had cross-reactive humoral immunity against SARS-CoV-2 before the COVID-19 pandemic started. Moreover, among individuals from relatively isolated regions, there were significantly fewer reliably cross-reactive sera. The possible significance of these data and impact of cross-immunity to SARS-CoV-2 on the prevalence and mortality of COVID-19 needs further assessment.

4.
Front Bioeng Biotechnol ; 11: 1187761, 2023.
Article in English | MEDLINE | ID: mdl-37456729

ABSTRACT

Despite the long history of use and the knowledge of the genetics and biochemistry of E. coli, problems are still possible in obtaining a soluble form of recombinant proteins in this system. Although, soluble protein can be obtained both in the cytoplasm and in the periplasm of the bacterial cell. The latter is a priority strategy for obtaining soluble proteins. The fusion protein technology followed by detachment of the fusion protein with proteases is used to transfer the target protein into the periplasmic space of E. coli. We have continued for the first time to use the main viral protease 3CL of the SARS-CoV-2 virus for this purpose. We obtained a recombinant 3CL protease and studied its complex catalytic properties. The authenticity of the resulting recombinant enzyme, were confirmed by specific activity analysis and activity suppression by the known low-molecular-weight inhibitors. The catalytic efficiency of 3CL (0.17 ± 0.02 µM-1-s-1) was shown to be one order of magnitude higher than that of the widely used tobacco etch virus protease (0.013 ± 0.003 µM-1-s-1). The application of the 3CL gene in genetically engineered constructs provided efficient specific proteolysis of fusion proteins, which we demonstrated using the receptor-binding domain of SARS-CoV-2 spike protein and GST fusion protein. The solubility and immunochemical properties of RBD were preserved. It is very important that in work we have shown that 3CL protease works effectively directly in E. coli cells when co-expressed with the target fusion protein, as well as when expressed as part of a chimeric protein containing the target protein, fusion partner, and 3CL itself. The results obtained in the work allow expanding the repertoire of specific proteases for researchers and biotechnologists.

5.
J Clin Med ; 11(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887818

ABSTRACT

Identification of factors behind the level and duration of persistence of the SARS-CoV-2 antibodies in the blood is assumed to set the direction for studying humoral immunity mechanisms against COVID-19, optimizing the strategy for vaccine use, antibody-based drugs, and epidemiological control of COVID-19. Objective: This study aimed to study the relationship between clinical and demographic characteristics and the level of IgG antibodies to the RBD of SARS-CoV-2 spike protein after COVID-19 in the long term. Residents of the Altai Region of Western Siberia of Russia, Caucasians, aged from 27 to 93 years (median 53.0 years), who recovered from COVID-19 between May 2020 and February 2021 (n = 44) took part in this prospective observational study. The titer of IgG antibodies to the RBD of SARS-CoV-2 spike protein was measured repeatedly in the blood at 4-13 months from the beginning of the clinical manifestation of COVID-19 via the method of enzyme-linked immunosorbent assay. The antibody titer positively correlated with age (p = 0.013) and COVID-19 pneumonia (p = 0.002) at 20-40 and 20-24 weeks from the onset of COVID-19 symptoms, respectively. Age was positively associated with antibody titer regardless of history of COVID-19 pneumonia (beta regression coefficient p = 0.009). The antibody titer decreased in 15 (34.1%) patients, increased in 10 (22.7%) patients, and did not change in 19 (43.2%) patients from the baseline to 48-49 weeks from the onset of COVID-19 symptoms, with seropositivity persisting in all patients. Age and COVID-19 pneumonia are possibly associated with higher IgG antibodies to the spike protein RBD of SARS-CoV-2 following COVID-19 in the long term. Divergent trends of anti-RBD IgG levels in adults illustrate inter-individual differences at 4-13 months from the onset of COVID-19 symptoms.

6.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887069

ABSTRACT

Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses' E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses' E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.


Subject(s)
Encephalitis Viruses, Tick-Borne , Flavivirus Infections , Antibodies, Neutralizing , Antibodies, Viral , Cross Reactions , Humans
7.
Viruses ; 14(5)2022 05 16.
Article in English | MEDLINE | ID: mdl-35632800

ABSTRACT

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Spike Glycoprotein, Coronavirus , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chickens , Cricetinae , Disease Models, Animal , Ferrets , Mice , Mice, Inbred BALB C , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology
8.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216301

ABSTRACT

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Immunity, Humoral/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dextrans/chemistry , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermidine/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Vero Cells
9.
Vaccines (Basel) ; 10(1)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35062757

ABSTRACT

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.

10.
ACS Med Chem Lett ; 13(1): 140-147, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35043075

ABSTRACT

For the first time, derivatives of 3,7-diazabicyclo[3.3.1]nonane (bispidine) were proposed as potential inhibitors of the SARS-CoV-2 main viral protease (3-chymotrypsin-like, 3CLpro). Based on the created pharmacophore model of the active site of the protease, a group of compounds were modeled and tested for activity against 3CLpro. The 3CLpro activity was measured using the fluorogenic substrate Dabcyl-VNSTLQSGLRK(FAM)MA; the efficiency of the proposed approach was confirmed by comparison with literature data for ebselen and disulfiram. The results of the experiments performed with bispidine compounds showed that 14 compounds exhibited activity in the concentration range 1-10 µM, and 3 samples exhibited submicromolar activity. The structure-activity relationship studies showed that the molecules containing a carbonyl group in the ninth position of the bicycle exhibited the maximum activity. Based on the experimental and theoretical results obtained, further directions for the development of this topic were proposed.

11.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35025110

ABSTRACT

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Aptamers, Nucleotide/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , SELEX Aptamer Technique , Spike Glycoprotein, Coronavirus
12.
Pathogens ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34832577

ABSTRACT

The COVID-19 pandemic, which began at the end of 2019 in Wuhan, has affected 220 countries and territories to date. In the present study, we studied humoral immunity in samples of the blood sera of COVID-19 convalescents of varying severity and patients who died due to this infection, using native SARS-CoV-2 and its individual recombinant proteins. The cross-reactivity with SARS-CoV (2002) was also assessed. We used infectious and inactivated SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/2020 strain, inactivated SARS-CoV strain (strain Frankfurt 1, 2002), recombinant proteins, and blood sera of patients diagnosed with COVID-19. The blood sera from patients were analyzed by the Virus Neutralization test, Immunoblotting, and ELISA. The median values and mean ± SD of titers of specific and cross-reactive antibodies in blood sera tested in ELISA were mainly distributed in the following descending order: N > trimer S > RBD. ELISA and immunoblotting revealed a high cross-activity of antibodies specific to SARS-CoV-2 with the SARS-CoV antigen (2002), mainly with the N protein. The presence of antibodies specific to RBD corresponds with the data on the neutralizing activity of blood sera. According to the neutralization test in a number of cases, higher levels of antibodies that neutralize SARS-CoV-2 were detected in blood serum taken from patients several days before their death than in convalescents with a ranging disease severity. This high level of neutralizing antibodies specific to SARS-CoV-2 in the blood sera of patients who subsequently died in hospital from COVID-19 requires a thorough study of the role of humoral immunity as well as comorbidity and other factors affecting the humoral response in this disease.

13.
Nanoscale ; 12(42): 21885-21894, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33107540

ABSTRACT

Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents.


Subject(s)
Breast Neoplasms , Nanoparticles , Single-Domain Antibodies , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Humans , Receptor, ErbB-2 , Trastuzumab
SELECTION OF CITATIONS
SEARCH DETAIL
...