Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JHEP Rep ; 6(2): 100974, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38283757

ABSTRACT

Background & Aims: The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods: AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results: A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions: Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications: This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.

2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499047

ABSTRACT

Piperine (PIP) is a major phytoconstituent in black pepper which is responsible for various pharmacological actions such as anti-inflammatory, antioxidant, and antitumor activity. To investigate the effects and mechanisms of PIP on cigarette smoke (CS)-induced lung pathology using both in-vitro and in-vivo models. BEAS-2B and A549 cells were exposed to CS extract (CSE) for 48 h; BALB/c mice were exposed to CS (9 cigarettes/day, 4 days) to induce features of airway disease. PIP at doses of (0.25, 1.25, and 6.25 µM, in vitro; 1 and 10 mg/kg, in vivo, i.n) and DEX (1 µM, in vitro; 1 mg/kg, in vivo, i.n) were used to assess cytotoxicity, oxidative stress, epithelial−mesenchymal transition (EMT), Sirtuin1 (SIRT1), inflammation-related cellular signaling, and lung function. PIP treatment protects cells from CSE-induced lung epithelial cell death. PIP treatment restores the epithelial marker (p < 0.05) and decreases the mesenchymal, inflammatory markers (p < 0.05) in both in vitro and in vivo models. The PIP treatment improves the altered lung function (p < 0.05) in mice induced by CS exposure. Mechanistically, PIP treatment modulates SIRT1 thereby reducing the inflammatory markers such as IL-1ß, IL-6 and TNF-α (p < 0.05) and enhancing the epigenetic marker HDAC2 (p < 0.05) and antioxidant marker Nrf2 (p < 0.05) expressions. Thus, PIP alleviates pulmonary inflammation by modulating the SIRT1-mediated inflammatory cascade, inhibits EMT, and activates Nrf2 signaling.


Subject(s)
Epithelial-Mesenchymal Transition , Piperidines , Pneumonia , Smoke , Animals , Mice , Antioxidants/pharmacology , Lung/pathology , Mice, Inbred BALB C , NF-E2-Related Factor 2/genetics , Oxidative Stress , Pneumonia/drug therapy , Pneumonia/pathology , Sirtuin 1/genetics , Nicotiana/adverse effects , Smoke/adverse effects , Piperidines/pharmacology
3.
Phytomedicine ; 106: 154415, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070663

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE: POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase  enzyme. Several studies reported that POH could inhibit the phosphorylation of  NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition.  Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS: Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS: The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION: These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.


Subject(s)
Colitis, Ulcerative , Oils, Volatile , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Cytokines , Dextran Sulfate/adverse effects , Dopamine , Eosine Yellowish-(YS)/adverse effects , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/pharmacology , Farnesyltranstransferase/therapeutic use , Hydrocortisone/pharmacology , Interleukin-6/pharmacology , Mice , Mice, Inbred C57BL , Monoterpenes , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oils, Volatile/pharmacology , Serotonin/pharmacology , Signal Transduction , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
J Psychiatr Res ; 144: 462-482, 2021 12.
Article in English | MEDLINE | ID: mdl-34768069

ABSTRACT

Major depressive disorder (MDD) is the foremost leading psychiatric illness prevailing around the globe. It usually exists along with anxiety and other clinical conditions (cardiovascular, cancer, neurodegenerative diseases, and infectious diseases). Chronic restraint stress (RS) and LPS-induce neurobehavioral alterations in rodent models however their interaction studies in association with the pathogenesis of MDD are still unclear. Therefore, the current study was aimed to investigate the LPS influence on chronic RS mediated redox imbalance, apoptosis, and autophagic dysregulation in the hippocampus (HIP) and frontal cortex (FC) of mice brain. Male Balb/c mice were exposed to 28 days consecutive stress (6h/day) with a single-dose LPS challenge (0.83 mg/kg, i.p.) on the last day (Day 28). In addition, we also carried out separate study to understand physiological relevance, where we used the DSS (dextran sulfate sodium), a water soluble polysaccharide (negatively charged) and studied its influence on RS induced neurobehavioral and certain neurochemical anomalies. The obtained results in RS and RS + LPS animal groups showed significant immune dysfunction, depleted monoamines, lowered ATP & NAD level, elevated serum CORT level, serum and brain tissues IL-1ß/TNF-α/IL-6, SOD activity but reduced CAT activity. Furthermore, the redox perturbation was found where significantly upregulated P-NFκB p65, Keap-1, Prx-SO3 and downregulated Nrf2, Srx1, Prx2 protein expression was seen in RS + LPS mice. The apoptosis signaling (P-ASK1, P-p38 MAPK, P-SAPK/JNK, cleaved PARP, cleaved Caspase-3, Cyto-C), autophagic impairment (p62, LC3II/I) were noticed in HIP and FC of RS and RS + LPS grouped animals. Our new findings provide a complex interplay of chemical (LPS) and physical (RS) stressors where both single dose LPS challenge and 3% DSS in drinking water (for 7 days) exaggerated chronic RS-induced inflammation, lowered redox status, increased apoptosis and dysregulated autophagy leading drastic neurobehavioral alterations in the mice.


Subject(s)
Depressive Disorder, Major , Lipopolysaccharides , Animals , Apoptosis , Autophagy , Lipopolysaccharides/toxicity , Male , Mice , Oxidation-Reduction
5.
ACS Chem Neurosci ; 12(11): 1948-1960, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34027667

ABSTRACT

Kinesins are the motor proteins that transport excitatory receptors to the synaptic membrane by forming a complex with receptor cargo leading to central sensitization causing neuropathic pain. Many regulatory proteins govern the transit of receptors by activating kinesin, and Aurora kinases are one of them. In this study, we have performed in silico molecular dynamics simulation to delineate the dynamic interaction of Aurora kinase A with its pharmacological inhibitor, tozasertib. The results from the molecular dynamics study shows that tozasertib-Aurora kinase A complex is stabilized through hydrogen bonding, polar interactions, and water bridges. Findings from the in vitro studies suggest that tozasertib treatment significantly attenuates lipopolysaccharide (LPS)-induced increase in oxidonitrosative stress and kif11 overexpression in C6 glial cell lines. Further, we investigated the regulation of kif11 and its modulation by tozasertib in an animal model of neuropathic pain. Two weeks post-CCI surgery we observed a significant increase in pain hypersensitivity and kif11 overexpression in DRG and spinal cord of nerve-injured rats. Tozasertib treatment significantly attenuates enhanced pain hypersensitivity along with the restoration of kif11 expression in DRG and spinal cord and oxidonitrosative stress in the sciatic nerve of injured rats. Our findings demonstrate the potential role of tozasertib for the management of neuropathic pain.


Subject(s)
Neuralgia , Nociception , Animals , Aurora Kinases , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Piperazines , Rats , Spinal Cord
6.
Neurosci Lett ; 754: 135751, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33610665

ABSTRACT

BACKGROUND AND PURPOSE: Ongoing neuropathic pain is one of the most challenging clinical problems which have detrimental effects on a patient's life quality. Conventional therapies for chronic neuropathic pain majorly includes centrally acting analgesics. Unfortunately, the unceasing use of these drugs results in adverse effects, such as CNS in-coordination, respiratory depression and substance use disorder. DALDA ([D-Arg2, Lys4]-Dermorphin-(1-4)-amide), a peripherally acting opioid have been shown to possess potent analgesic activity without causing CNS toxicities in nerve-injured rats. However, the mechanism(s) underpinning DALDA induced-attenuation of ongoing neuropathic pain is yet to identify [1]. EXPERIMENTAL DESIGN: In this study, we have measured the in-silico ligand-receptor binding affinity of DALDA against potential inflammatory targets by utilizing glide module of schrödinger software. Effect of DALDA on oxido-inflammatory stress was evaluated in LPS-induced C6 glial cells. In-vitro studies were followed by the behavioral assessments, where effect of DALDA was measured in chronic constriction injured rats. To examine the effect of DALDA on dopaminergic neurotransmission, cerebrospinal fluid of nerve-injured rats was assessed using LC-MS/QToF (Liquid Chromatography-Mass spectrometry/ Quadrapole time of flight Analyzer). RESULTS: DALDA has shown a good binding affinity with chemokine receptor type-2 (CCR2), chemokine CX3C receptor 1 (CX3CR1) and purinergic receptor (P2×4), major receptor subtypes involved in pain and inflammation. Findings from the in-vitro studies suggest that DALDA possesses potent anti-oxidant activity leading to inhibition of p38-MAPK pathway [1]. Moreover, the subcutaneous administration of DALDA leads to dose-dependent attenuation of thermal and mechanical hypersensitivity along with inhibition of neuroinflammatory mediators in serum and spinal cord of nerve-injured rats. Most importantly, DALDA treated neuropathic rats showed a preference for the DALDA-treated chamber, which was attenuated on pre-treatment with dopaminergic receptor antagonist, flupenthixol. LC-MS analysis further confirms the enhanced dopaminergic transmission in the brain of DALDA-treated neuropathic rats. CONCLUSION: Our findings suggest that DALDA mediated attenuation of ongoing neuropathic pain may be associated with a decrease in spinal neuroinflammatory signalling and subsequent increase in the brain dopamine level; may serve a potential therapeutic for the treatment of ongoing neuropathic pain.


Subject(s)
Analgesics, Opioid/pharmacology , Dopaminergic Neurons/drug effects , Neuralgia/drug therapy , Oligopeptides/pharmacology , Analgesics, Opioid/therapeutic use , Animals , Brain/cytology , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Computer Simulation , Disease Models, Animal , Dopamine/cerebrospinal fluid , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Humans , MAP Kinase Signaling System/drug effects , Male , Neuralgia/pathology , Oligopeptides/therapeutic use , Rats , Spinal Cord/cytology , Spinal Cord/drug effects , Spinal Cord/metabolism , Synaptic Transmission/drug effects
7.
Mol Neurobiol ; 58(1): 450, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32939693

ABSTRACT

The original version of this article unfortunately contained mistakes.

8.
Mol Neurobiol ; 56(6): 3854-3864, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30215159

ABSTRACT

Kinesins are one of the neoteric and efficacious targets recently reported to play an important role in the initiation and progression of chronic pain. Kinesins are anterograde microtubule-based motor proteins that are involved in trafficking of receptors including nociceptors and progression of pain. The specific kinesin and regulatory proteins interplay is crucial for the delivery of nociceptors to the synapse. If this complex and less understood interplay is inhibited, it may result in a decrease in central sensitization, and thus attenuation of pain. This review is focused on the transportation process of receptors/cargos, the role of regulatory proteins influencing the respective kinesin, and their relationship with chronic pain. The review also features specific strategies adopted by researchers for targeting kinesin and chronic pain. Considering the recent preclinical success of kinesin inhibition in pain, it is expected that inhibitors for kinesin or enzymes responsible for kinesin activation could be developed or repurposed as alternative, safe, and potential therapies for the treatment of chronic pain.


Subject(s)
Chronic Pain/drug therapy , Kinesins/metabolism , Molecular Targeted Therapy , Animals , Humans , Receptors, Cell Surface/metabolism , Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...