Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202403229, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38577991

ABSTRACT

We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.

2.
Chem Commun (Camb) ; 58(91): 12657-12660, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36250601

ABSTRACT

Molecular de-aggregation was observed at the air/water interface of aqueous microdroplets. We probed this phenomenon using dyes such as Rhodamine 6G (R6G), Rhodamine B, acridine orange, and fluorescein, which show aggregation-induced shift in fluorescence. The fluorescence micrographs of microdroplets derived from the aqueous solutions of these dyes show that they are monomeric at the air/water interface, but highly aggregated at the core. We propose that rapid evaporation of the solvent influences the de-aggregation of molecules at the air-water interface of the microdroplets.


Subject(s)
Acridine Orange , Water , Rhodamines , Fluorescein , Spectrometry, Fluorescence , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...