Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17623, 2024.
Article in English | MEDLINE | ID: mdl-38952974

ABSTRACT

Although exercise training has been shown to enhance neurological function, there is a shortage of research on how exercise training affects the temporal-spatial synchronization properties of functional networks, which are crucial to the neurological system. This study recruited 23 professional and 24 amateur dragon boat racers to perform simulated paddling on ergometers while recording EEG. The spatiotemporal dynamics of the brain were analyzed using microstates and omega complexity. Temporal dynamics results showed that microstate D, which is associated with attentional networks, appeared significantly altered, with significantly higher duration, occurrence, and coverage in the professional group than in the amateur group. The transition probabilities of microstate D exhibited a similar pattern. The spatial dynamics results showed the professional group had lower brain complexity than the amateur group, with a significant decrease in omega complexity in the α (8-12 Hz) and ß (13-30 Hz) bands. Dragon boat training may strengthen the attentive network and reduce the complexity of the brain. This study provides evidence that dragon boat exercise improves the efficiency of the cerebral functional networks on a spatiotemporal scale.


Subject(s)
Brain , Electroencephalography , Humans , Male , Electroencephalography/methods , Brain/physiology , Adult , Young Adult , Exercise/physiology , Water Sports/physiology , Attention/physiology , Female
2.
Front Psychol ; 14: 1109949, 2023.
Article in English | MEDLINE | ID: mdl-37287781

ABSTRACT

Purposes: Dragon boat is a traditional sport in China, but the brain function characteristics of dragon boat athletes are still unclear. Our purpose is to explore the changing characteristics of brain function of dragon boat athletes at different levels before and after exercise by monitoring the changes of EEG power spectrum and microstate of athletes before and after rowing. Methods: Twenty-four expert dragon boat athletes and 25 novice dragon boat athletes were selected as test subjects to perform the 1,000 m all-out paddling exercise on a dragon boat dynamometer. Their resting EEG data was collected pre- and post-exercise, and the EEG data was pre-processed and then analyzed using power spectrum and microstate based on Matlab software. Results: Post-Exercise, the Heart Rate peak (HR peak), Percentage of Heart Rate max (HR max), Rating of Perceived Exertion (RPE), and Exercise duration of the novice group were significantly higher than expert group (p < 0.01). Pre-exercise, the power spectral density values in the δ, α1, α2, and ß1 bands were significantly higher in the expert group compared to the novice group (p < 0.05). Post-exercise, the power spectral density values in the δ, θ, and α1 bands were significantly lower in the expert group compared to the novice group (p < 0.05), the power spectral density values of α2, ß1, and ß2 bands were significantly higher (p < 0.05). The results of microstate analysis showed that the duration and contribution of microstate class D were significantly higher in the pre-exercise expert group compared to the novice group (p < 0.05), the transition probabilities of A → D, C → D, and D → A were significantly higher (p < 0.05). Post-exercise, the duration, and contribution of microstate class C in the expert group decreased significantly compared to the novice group (p < 0.05), the occurrence of microstate classes A and D were significantly higher (p < 0.05), the transition probability of A → B was significantly higher (p < 0.05), and the transition probabilities of C → D and D → C were significantly lower (p < 0.05). Conclusion: The functional brain state of dragon boat athletes was characterized by expert athletes with closer synaptic connections of brain neurons and higher activation of the dorsal attention network in the resting state pre-exercise. There still had higher activation of cortical neurons after paddling exercise. Expert athletes can better adapt to acute full-speed oar training.

3.
Brain Sci ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36552080

ABSTRACT

Purpose: This study aimed to detect differences in post-exercise brain activity between the left and right paddlers due to exercise by analyzing the resting-state electroencephalogram (EEG) power spectrum before and after exercise. Methods: Twenty-one right paddlers and twenty-two left paddlers completed a 1 km all-out test on a dragon boat ergometer, and their heart rate and exercise time were recorded. EEG signals were collected from superficial brain layers before and after exercise; then, the EEG power spectrum was extracted and compared in different frequency bands. In addition, the degree of lateralization in each brain region was assessed by the asymmetry index. Results: There was no significant difference in the power spectrum values and asymmetry indices between the left and right paddlers before rowing (p ˃ 0.05). However, after rowing, the left-paddlers group had significantly higher spectral power values in θ and α bands than the right-paddlers group (p < 0.05), and brain lateralization in both groups of athletes occurred mainly in the ipsilateral hemisphere of the frontal and central regions. Conclusion: The 1 km of rowing induced more brain activation in the left paddlers, and both left and right paddlers showed functional aggregation of hemispheric lateralization.

4.
Polymers (Basel) ; 10(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30961194

ABSTRACT

Ziyang green tea was considered a medicine food homology plant to improve chronic fatigue Ssyndrome (CFS) in China. The aim of this research was to study the therapeutic effect of selenium-polysaccharides (Se-TP) from Ziyang green tea on CFS and explore its metabolic mechanism. A CFS-rats model was established in the present research and Se-TP was administrated to evaluate the therapeutic effect on CFS. Some serum metabolites including blood urea nitrogen (BUN), blood lactate acid (BLA), corticosterone (CORT), and aldosterone (ALD) were checked. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS). Multivariate statistical analysis was also used to check the data. The results selected biomarkers that were entered into the MetPA database to analyze their corresponding metabolic pathways. The results demonstrated that Se-TP markedly improved the level of BUN and CORT in CFS rats. A total of eight differential metabolites were detected in GC-MS analysis, which were benzoic acid, itaconic acid, glutaric acid, 4-acetamidobutyric acid, creatine, 2-hydroxy-3-isopropylbutanedioic acid, l-dopa, and 21-hydroxypregnenolone. These differential metabolites were entered into the MetPA database to search for the corresponding metabolic pathways and three related metabolic pathways were screened out. The first pathway was steroid hormone biosynthesis. The second was tyrosine metabolism, and the third was arginine-proline metabolism. The 21-hydroxypregnenolone level of rats in the CFS group markedly increased after the Se-TP administration. In conclusion, Se-TP treatments on CFS rats improved their condition. Its metabolic mechanism was closely related to that which regulates the steroid hormone biosynthesis.

5.
Biomed Res Int ; 2017: 8182020, 2017.
Article in English | MEDLINE | ID: mdl-28421200

ABSTRACT

Purpose. The aim of the present study was to elucidate the metabolic mechanisms associated with chronic fatigue syndrome (CFS) via an analysis of urine metabolites prior to and following exercise in a rat model. Methods. A rat model of CFS was established using restraint-stress, forced exercise, and crowded and noisy environments over a period of 4 weeks. Behavioral experiments were conducted in order to evaluate the model. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS) in combination with multivariate statistical analysis before and after exercise. Results. A total of 20 metabolites were detected in CFS rats before and after exercise. Three metabolic pathways (TCA cycle; alanine, aspartate, and glutamate metabolism; steroid hormone biosynthesis) were significantly impacted before and after exercise, while sphingolipid metabolism alone exhibited significant alterations after exercise only. Conclusion. In addition to metabolic disturbances involving some energy substances, alterations in steroid hormone biosynthesis and sphingolipid metabolism were detected in CFS rats. Sphingosine and 21-hydroxypregnenolone may be key biomarkers of CFS, potentially offering evidence in support of immune dysfunction and hypothalamic-pituitary-adrenal (HPA) axis hypoactivity in patients with CFS.


Subject(s)
17-alpha-Hydroxypregnenolone/urine , Fatigue Syndrome, Chronic/urine , Physical Conditioning, Animal , Sphingosine/urine , Amino Acids/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Fatigue Syndrome, Chronic/physiopathology , Female , Gas Chromatography-Mass Spectrometry/methods , Gonadal Steroid Hormones/metabolism , Humans , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...