Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cytokine ; 162: 156114, 2023 02.
Article in English | MEDLINE | ID: mdl-36603482

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by infection, trauma, shock, aspiration or drug reaction. The pathogenesis of ARDS is characterized as an unregulated inflammatory storm, which causes endothelial and epithelial layer damage, leading to alveolar fluid accumulation and pulmonary edema. Previous studies have shown the potential role of mesenchymal stem cells (MSC) in combating the inflammatory cascade by increasing the anti-inflammatory mediator interleukin-10 (IL-10). However, the involved mechanisms are unclear. Here we investigated whether a key immunomodulatory regulator, stanniocalcin-1 (STC-1), was secreted by MSC to activate phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)/ mammalian target of rapamycin (mTOR) signaling pathway to increase IL-10 expression in alveolar macrophages. Lipopolysaccharide (LPS)-stimulated alveolar macrophages co-cultured with human umbilical mesenchymal stem cells (HUMSC) secreted high levels of IL-10. HUMSC co-cultured with alveolar macrophages expressed high STC-1 levels and increased PI3K, AKT and mTOR phosphorylation after LPS activation in alveolar macrophages. STC-1 knockdown in HUMSC decreased the phosphorylation of PI3K, AKT and mTOR and suppressed IL-10 expression in alveolar macrophages. Rapamycin (an mTOR inhibitor) reduced IL-10 secretion in alveolar macrophages. These results, together with our previous study and others, indicate that the PI3K/AKT/mTOR pathway is involved in the regulation of IL-10 production by STC-1 secreted by HUMSC in alveolar macrophages.


Subject(s)
Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Immunologic Factors/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Macrophages, Alveolar/metabolism , Mesenchymal Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Respiratory Distress Syndrome/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
J Thorac Dis ; 10(5): 3016-3026, 2018 May.
Article in English | MEDLINE | ID: mdl-29997969

ABSTRACT

BACKGROUND: In patients with pulmonary arterial hypertension (PAH), mast cells (MCs) are extensively observed around pulmonary vessels. However, their temporal and spatial variation during PAH development remains obscure. This study investigated the dynamic evolution of MCs in lungs and right ventricles (RV) to illuminate their role in pulmonary vascular and RV remodeling. METHODS: The PAH model was established by a single intra-peritoneal injection of monocrotaline (MCT, 60 mg/kg) in rats. On day 0, 3, 7, 14, and 28 after MCT injection, lung and RV tissues were harvested for staining with hematoxylin and eosin (HE), Gomori aldehyde fuchsin (GAF), toluidine blue (TB) and picrosirius red (PSR). Immunohistochemistry was performed to evaluate the levels of α-SMA, CD68 and tryptase. A simple RV remolding model was produced as well by pulmonary artery banding (PAB). RV tissues were collected to determine the degree of MCs infiltration. RESULTS: After MCT challenge, elevated mean pulmonary arterial pressure (mPAP), increased RV systolic pressure (RVSP), pulmonary arterial media hypertrophy as well as distal vascular muscularization gradually occurred with time. MCs recruitment along with CD68+ macrophages accumulation was observed around distal pulmonary vessels and in alveolar septa. Excessive infiltration and degranulation of MCs were detected in MCT-treated group in lung tissues but not in RV. In addition, no exacerbation of MCs infiltration and degranulation in RV was noted in PAB-treated rats, suggesting few contributions of MCs to RV remodeling. CONCLUSIONS: Our findings implied a crucial role of MCs in the remodeling of pulmonary vessels, not RV, which probably through releasing cytokines such as tryptase. The present study enriches the knowledge about PAH, providing a potential profile of MCs as a switch for the treatment of PAH.

3.
Respir Physiol Neurobiol ; 247: 87-95, 2018 01.
Article in English | MEDLINE | ID: mdl-28964937

ABSTRACT

Endothelial injury is considered as a trigger of pulmonary vascular lesions in the pathogenesis of hypoxic pulmonary hypertension (HPH). Although endothelial colony-forming cells (ECFCs) have vascular regeneration potential to maintain endothelial integrity, hypoxia-induced precise alteration in ECFCs function remains controversial. This study investigated the impact of hypoxia on human ECFCs function in vitro and the underlying mechanism. We found that hypoxia inhibited ECFCs proliferation, migration and angiogenesis. Compared with no treatment, the expression of hypoxia inducible factor-1α (HIF-1α) in hypoxia-treated ECFCs was increased, with an up-regulation of p27 and a down-regulation of cyclin D1. The over-secreted vascular endothelial growth factor (VEGF) was detected, with the imbalanced expression of fetal liver kinase 1 (flk-1) and fms related tyrosine kinase 1 (flt-1). Hypoxia-induced changes in ECFCs could be reversed by HIF-1α inhibitor KC7F2. These data suggest that HIF-1α holds the key in regulating ECFCs function which may open a new perspective of ECFCs in HPH management.


Subject(s)
Endothelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/metabolism , Adult , Cardiovascular Agents/pharmacology , Cell Cycle/physiology , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Cyclin D1/metabolism , Disulfides/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Middle Aged , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Young Adult
4.
Oncotarget ; 8(30): 49217-49223, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28514746

ABSTRACT

Over-expressed endothelial-cell-specific molecule-1 (ESM-1) in tumor vascular endothelium contributes to tumor angiogenesis, metastasis, and poor prognosis. However, the content of ESM-1 in pleural effusion is unclear. A retrospective study was carried out to investigate the diagnostic and prognostic values of ESM-1 with malignant pleural effusions in patients with non-small cell lung cancer (NSCLC). ESM-1 levels in malignant pleural effusion (MPE) from 70 patients with NSCLC and 50 cases of benign pleural effusion (BPE) were measured using enzyme-linked immunosorbent assay. Receiver operating characteristic (ROC) curve was calculated to assess the diagnostic value of ESM-1. Survival curves were performed by Kaplan-Meier method and survival characteristics were compared by log-rank test. Univariable and multivariate Cox proportional hazards model were carried out to analysis the significance of different prognostic factors for overall survival (OS). ESM-1 levels were significantly higher in MPE than those in BPE (p < 0.001). By ROC curve analysis, with a cutoff level of 19.58 ng/ml, the accuracy, sensitivity, and specificity for ESM-1 diagnosis MPE were 82.5%, 81.4%, and 84.0%, respectively. Moreover, NSCLC patients with pleural fluid ESM-1 levels below 19.58 ng/ml had significant longer OS than those patients with higher levels (22.09 months vs. 11.49 months, p = 0.003). Multivariate survival analysis showed that high MPE ESM-1 level was an independent prognostic factor (HR, 1.007; p = 0.039) for the OS of NSCLC patients. This study showed that ESM-1 level in pleural effusion could be a potential diagnostic and prognostic marker in NSCLC patients with MPE.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Pleural Effusion, Malignant/metabolism , Pleural Effusion, Malignant/pathology , Proteoglycans/metabolism , Biomarkers , Biomarkers, Tumor , Biopsy , Carcinoma, Non-Small-Cell Lung/mortality , Female , Gene Expression , Humans , Lung Neoplasms/mortality , Male , Middle Aged , Neoplasm Proteins/genetics , Prognosis , Proteoglycans/genetics , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL