Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(10): 17571-17580, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858938

ABSTRACT

Monolithic distributed Bragg reflector (DBR) cavity which directly integrates fiber Bragg gratings (FBGs) into the photosensitive RE-doped fibers is a promising configuration in constructing compact and efficient single frequency fiber lasers (SFFLs). Yet, the doping level of rare-earth (RE) ions has generally to be sacrificed in the classical Ge-photosensitized RE-doped silica fibers because of the dramatic refractive index increase caused by the introduction of Ge. Here, we demonstrate an approach to realize the trade-off between photosensitivity and RE doping concentration. We validate that the addition of a small amount of cerium (0.37wt.%) instead of Ge could photosensitize Yb3+-doped silica fiber (YDF), while maintaining fiber numerical aperture (NA) at 0.12 under a high 2.5-wt.% Yb doping level. Based on the short monolithic DBR cavity constructed by this germanium-free photosensitive highly YDF, a 1064 nm fiber laser with a 48.6% slope efficiency and an over 200 mW power on two orthogonally polarized modes could be realized. Further stable and linear-polarized 1064 nm SFFL is also demonstrated in a designed monolithic polarization maintaining cavity with an output power of 119 mW and an efficiency of 26.4%. Our results provide an alternative way to develop photosensitive highly RE-doped fibers towards monolithic laser cavity application.

2.
Phys Chem Chem Phys ; 26(5): 3869-3879, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38226609

ABSTRACT

Rare-earth-doped silica-based composite glasses (Re-SCGs) are widely used as high-quality laser gain media in defense, aerospace, energy, power, and medical applications. The variable regional chemical environments of Re-SCGs can induce new photoluminescence properties of rare-earth ions but can cause the selective aggregation of rare-earth ions, limiting the application of Re-SCGs in the field of high-power lasers. Here, topological engineering is proposed to adjust the degree of cross-linking of phase-separation network chains in Re-SCGs. A combination of experimental and theoretical characterization techniques suggested that the selective aggregation of rare-earth ions originates from the formation of phase-separated structures in glasses. The decomposition of nanoscale phase separation structures to the sub-nanometer scale, enabled by incorporating Al3+ ions, not only maintains the high luminescence efficiency of rare earth ions but also increases light transmittance and reduces light scattering. Furthermore, our investigation encompassed the exploration of the inhibitory mechanism of Al3+ ions on phase-separation structures, as well as their influence on the spectral characteristics of Re-SCGs. This work provides a new design concept for composite glass materials doped with rare-earth ions and could broaden their application in the field of high-power lasers.

3.
Opt Express ; 31(20): 33741-33752, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859147

ABSTRACT

We demonstrate a high ytterbium concentration Yb/Al/P/Ce co-doped silica fiber by conventional modified chemical vapor deposition (MCVD) technology and solution doping process. The fiber has a Yb concentration of about 2.5 wt%, and the corresponding core absorption coefficient is measured to be ∼1400 dB/m at 976 nm. The gain coefficient was measured to be approximately 1.0 dB/cm. It is found that the Yb/Al/P/Ce co-doped silica shows a lower photodarkening-induced equilibrium loss of 52 dB/m at 633 nm than the Yb/Al/P co-doped silica fiber of 117 dB/m. Using the heavily Yb3+-doped silica fiber, a compact and robust ultrashort cavity single-frequency fiber laser was achieved with a maximum output power of 75 mW and a linewidth of 14 kHz. Furthermore, a compact passively mode-locked fiber laser (MLFL) with a repetition rate of 1.23 GHz was also proposed using our developed Yb-doped fiber. The laser properties of the proposed lasers were systematically investigated, demonstrating the superior performance of this fiber in terms of photodarkening resistance and ultrashort-cavity laser application. Furthermore, utilizing an all-fiber structure based on silica-based fiber offers the significant advantage of high stability and reliability.

4.
Chemistry ; 29(66): e202301771, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37665775

ABSTRACT

Qubits are the basic unit of quantum information and computation. To realize quantum computing and information processing, the decoherence times of qubits must be long enough. Among the studies of molecule-based electron spin qubits, most of the work focused on the ions with the spin S=1/2, where only single-bit gates can be constructed. However, quantum operations require the qubits to interact with each other, so people gradually carry out relevant research in ions or systems with S>1/2 and multilevel states. In this work, a two-dimensional (2D) oxygen-coordinated GdIII NaI -based oxamato supramolecular coordination framework, Na[Gd(4-HOpa)4 (H2 O)] ⋅ 2H2 O (1, 4-HOpa=N-4-hydroxyphenyloxamate), was selected as a possible carrier of qubit. The field-induced slow magnetic relaxation shows this system has phonon bottleneck (PB) effect at low temperatures with a very weak magnetic anisotropy. The pulse electron paramagnetic resonance studies show the spin-lattice and spin-spin relaxation times are T1 =1.66 ms at 4 K and Tm =4.25 µs at 8 K for its diamagnetically diluted sample (1Gd0.12 %). It suggested that the relatively long decoherence time is mainly ascribed to its near isotropic and the PB effect from resonance phonon trapped for pure sample, while the dilution further improves its qubit performance.

5.
Opt Express ; 31(8): 13307-13316, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157470

ABSTRACT

Nd3+-doped three-level (4F3/2-4I9/2) fiber lasers with wavelengths in the range of 850-950 nm are of considerable interest in applications such as bio-medical imaging and blue and ultraviolet laser generation. Although the design of a suitable fiber geometry has enhanced the laser performance by suppressing the competitive four-level (4F3/2-4I11/2) transition at ∼1 µm, efficient operation of Nd3+-doped three-level fiber lasers still remains a challenge. In this study, taking a developed Nd3+-doped silicate glass single-mode fiber as gain medium, we demonstrate efficient three-level continuous-wave lasers and passively mode-locked lasers with a gigahertz (GHz) fundamental repetition rate. The fiber is designed using the rod-in-tube method and has a core diameter of 4 µm with a numerical aperture of 0.14. In a short 4.5-cm-long Nd3+-doped silicate fiber, all-fiber CW lasing in the range of 890 to 915 nm with a signal-to-noise ratio (SNR) greater than 49 dB is achieved. Especially, the laser slope efficiency reaches 31.7% at 910 nm. Furthermore, a centimeter-scale ultrashort passively mode-locked laser cavity is constructed and ultrashort pulse at 920 nm with a highest GHz fundamental repetition is successfully demonstrated. Our results confirm that Nd3+-doped silicate fiber could be an alternative gain medium for efficient three-level laser operation.

6.
Materials (Basel) ; 15(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35329687

ABSTRACT

In this study, Yb/Al/Ge co-doped silica fiber core glasses with different GeO2 contents (0-6.03 mol%) were prepared using the sol-gel method combined with high-temperature sintering. The absorption, fluorescence, radiation-induced absorption, continuous-wave electron paramagnetic resonance spectra, and fluorescence decay curves were recorded and analyzed systematically before and after X-ray irradiation. The effects of GeO2 content on the valence variations of Yb3+/Yb2+ ions, spectral properties of Yb3+ ions, and radiation resistance of Yb/Al/Ge co-doped silica glasses were systematically studied. The results show that even if the GeO2 content of the sample is relatively low (0.62 mol%), it can inhibit the generation of Yb2+ ions with slight improvement in the spectral properties of Yb3+ ions in the pristine samples and effectively improve its radiation resistance. Direct evidence confirms that the generation of trapped-electron centers (Yb2+/Si-E'/Al-E') and trapped-hole centers (Al-OHC) was effectively inhibited by Ge co-doping. This study provides a theoretical reference for the development of high-performance, radiation-r esistant Yb-doped silica fibers.

7.
Opt Express ; 30(4): 6236-6247, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209563

ABSTRACT

We report a novel pretreatment method to improve the radiation resistance of Er-doped fiber (EDF). The processing object of this method is EDF preform, and the pretreatment processing involves three steps: deuterium loading, pre-irradiation, and thermal annealing. The effects of pretreatment conditions on the optical loss, gain performance, and radiation resistance of EDF were systematically studied. The relevant mechanisms were revealed using Fourier transform infrared (FTIR), radiation-induced absorption (RIA), and electron paramagnetic resonance (EPR) spectroscopies. The results show that the pretreatment can not only greatly reduce the hydroxyl content of the EDF core, but it can also effectively improve the radiation resistance of EDF. The online test results show that the gain of the commercial, pristine, and pretreated EDFs were reduced by 19.0, 4.2, and 1.3 dB, respectively, corresponding to a decrease of 68.1, 16.2, and 4.7% after 98 krad X-rays irradiation. The high vacuum experiments show that the pretreatment method can maintain long-term stable high radiation resistance. This work provides a reference for the development of high-performance radiation resistant EDFs for use in the lower, middle, and geosynchronous earth orbit.

8.
Materials (Basel) ; 15(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35160937

ABSTRACT

A high phosphorus Er3+/Yb3+ co-doped silica (EYPS) fiber core glass was prepared using the sol-gel method combined with high-temperature sintering. The absorption spectra, emission spectra, and fluorescence decay curves were measured and compared in temperatures ranging from 300 to 480 K. Compared to 915 and 97x nm, the absorption cross-section at ~940 nm (~0.173 pm2) demonstrates a weaker temperature dependence. Hence, the 940 nm pump mechanism is favorable for achieving a high-power laser output at 1.5 µm. Additionally, the double-exponential fluorescence decay of Yb3+ ions and the emission intensity ratio of I1018nm/I1534nm were measured to evaluate the energy transfer efficiency from Yb3+ ions to Er3+ ions. Through the external heating and active quantum defect heating methods, the emission intensity ratios of I1018nm/I1534nm increase by 30.6% and 709.1%, respectively, from ~300 to ~480 K. The results indicate that the temperature rises significantly reduce the efficiency of the energy transfer from the Yb3+ to the Er3+ ions.

9.
Opt Express ; 26(22): 28506-28516, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470027

ABSTRACT

Yb3+/Al3+ co-doped silica fibers (YDFs) with almost identical core glass compositions were prepared using the sol-gel and modified chemical vapor deposition (MCVD) methods. The photodarkening (PD) and laser performance before and after the PD process were tested under 974 nm pumping. The doping homogeneity of Yb3+ ions and clusters of Yb3+ ions in preform slices of these two fibers were investigated via optical absorption spectroscopy, photoluminescence emission spectra, electron probe microanalysis (EPMA), and low-temperature (4 K) electron paramagnetic resonance (EPR). It is known that the PD resistance of YDFs prepared via the sol-gel method is significantly better than that of YDFs prepared via MCVD under the same test conditions. EPMA mapping reveals that the doping homogeneity of Yb3+ ions in the sol-gel fiber core glass is better than that in the MCVD fiber. The low-temperature (4 K) EPR and cooperative luminescence spectra of Yb3+ ions indicate that the clustering degree of Yb3+ ions in the sol-gel fiber is lower than that in the MCVD fiber. In the absorption and emission spectra, small amounts of Yb2+ ions are observed in the preform slice from the sol-gel method. A model of the color-center generation in the PD process was proposed to explain the mechanism of PD resistance improvement for the YDFs fabricated via the sol-gel method.

10.
Opt Lett ; 43(10): 2356-2359, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29762591

ABSTRACT

The laser behavior of a centimeter-scale Er3+/Al3+ codoped silica fiber with core numerical aperture and core diameter of 0.15 and 8 µm, respectively, is reported. The core glass was prepared by the sol-gel method combined with high-temperature sintering; it contained Er3+ ion concentration as high as 1.32×1020 ions/cm3 and an Al/Er mole ratio of 10. The high doping homogeneity of Er3+ ions in the fiber core was confirmed by an electron probe microanalyzer element scanning, long Er3+: I13/24 emission lifetime of 11.4 ms, and low refractive index fluctuation of fiber core (±1×10-4). The signal gain of fibers with 4.6 cm, 10 cm, and 16 cm lengths was tested in the 1500-1620 nm range. A gain of 7 dB is achieved at 1560 nm in a 16-cm-long EDF under 230 mW pump power. Aimed for CO2 sensor application, the laser behavior of Er/Al codoped fiber was tested at 1572 nm. A slope efficiency of 12% and an output power of 15 mW were achieved in a 10-cm-long fiber under 166 mW absorbed pump power. The newly developed silica fiber is promising for use in high-repetition-rate lasers.

11.
J Phys Chem B ; 122(10): 2809-2820, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29432014

ABSTRACT

Yb3+/Al3+/P5+-co-doped silica glasses with different P/Al ratios were prepared using the sol-gel method combined with high-temperature sintering. The evolution of composition-dependent color centers caused by X-ray irradiation in these glasses was correlated with their structural changes, which are controlled by the P/Al ratio. Nuclear magnetic resonance (NMR) and Raman spectra have been used to characterize the glass network structure, and advanced pulse electron paramagnetic resonance (EPR) has been employed to study the local coordination atomic structures of Yb3+ ions in pristine glasses as a function of the P/Al ratio. Si- (Si-E'), Al- (Al-E', Al-ODC, AlOHC), P- (P1, P2, POHC), and Yb-related (Yb2+) color centers in irradiated glasses have been observed and explained by optical absorption and continuous wave-EPR spectroscopies. The formation mechanisms of these centers, the structural models of glasses, and the relationship between them were proposed. Direct evidence confirms that the formation of Yb2+ ions induced by radiation is highly dependent on the coordination environment of Yb3+ ions in glasses. In addition, the glass network structure significantly affects the generation of oxygen hole color centers (AlOHCs/POHCs) caused by radiation. These results are useful in understanding the microstructural origin and the suppression mechanism of the radiodarkening effect by phosphorus co-doping in Yb3+-doped silica fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...