Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(9): 16398-16413, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859267

ABSTRACT

Attosecond electron bunches have wide application prospects in free-electron laser injection, attosecond X/γ-ray generation, ultrafast physics, etc. Nowadays, there is one notable challenge in the generation of high-quality attosecond electron bunch, i.e., how to enhance the electron bunch density. Using theoretical analysis and three-dimensional particle-in-cell simulations, we discovered that a relativistic vortex laser pulse interacting with near-critical density plasma can not only effectively concentrate the attosecond electron bunches to over critical density, but also control the duration and density of the electron bunches by tuning the intensity and carrier-envelope phase of the drive laser. It is demonstrated that this method can efficiently produce attosecond electron bunches with a density up to 300 times of the original plasma density, peak divergence angle of less than 0.5 ∘, and duration of less than 67 attoseconds. Furthermore, by using near-critical density plasma instead of solid targets, our scheme is potential for the generation of high-repetition-frequency attosecond electron bunches, thus reducing the requirements for experiments, such as the beam alignment or target supporter.

2.
Opt Express ; 29(19): 30223-30236, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614749

ABSTRACT

High-quality ultrashort electron beams have diverse applications in a variety of areas, such as 4D electron diffraction and microscopy, relativistic electron mirrors and ultrashort radiation sources. Direct laser acceleration (DLA) mechanism can produce electron beams with a large amount of charge (several to hundreds of nC), but the generated electron beams usually have large divergence and wide energy spread. Here, we propose a novel DLA scheme to generate high-quality ultrashort electron beams by irradiating a radially polarized laser pulse on a nanofiber. Since electrons are continuously squeezed transversely by the inward radial electric field force, the divergence angle gradually decreases as electrons transport stably with the laser pulse. The well-collimated electron bunches are effectively accelerated by the circularly-symmetric longitudinal electric field and the relative energy spread also gradually decreases. It is demonstrated by three-dimensional (3D) simulations that collimated monoenergetic electron bunches with 0.75° center divergence angle and 14% energy spread can be generated. An analytical model of electron acceleration is presented which interprets well by the 3D simulation results.

5.
Sci Rep ; 7: 42666, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218247

ABSTRACT

Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these "superponderomotive" energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

6.
Rev Sci Instrum ; 87(10): 104709, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802758

ABSTRACT

Image reconstruction in electrical capacitance tomography is an ill-posed inverse problem, and regularization techniques are usually used to solve the problem for suppressing noise. An anisotropic regional regularization algorithm for electrical capacitance tomography is constructed using a novel approach called spectral transformation. Its function is derived and applied to the weighted gradient magnitude of the sensitivity of Laplacian as a regularization term. With the optimum regional regularizer, the a priori knowledge on the local nonlinearity degree of the forward map is incorporated into the proposed online reconstruction algorithm. Simulation experimentations were performed to verify the capability of the new regularization algorithm to reconstruct a superior quality image over two conventional Tikhonov regularization approaches. The advantage of the new algorithm for improving performance and reducing shape distortion is demonstrated with the experimental data.

7.
Article in English | MEDLINE | ID: mdl-26764842

ABSTRACT

The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a plane laser impinges on a foil with modulated surface, the transverse instability is incited, and periodic perturbations of the proton density develop. The growth rate of the transverse instability is numerically diagnosed. It is found that the linear growth of the transverse instability lasts only a few laser periods, then the instability gets saturated. In order to optimize the modulation wavelength of the target, a method of information entropy is put forward to describe the chaos degree of the transverse instability. With appropriate modulation, the transverse instability shows a low chaos degree, and a quasi-monoenergetic proton beam is produced.

8.
Article in English | MEDLINE | ID: mdl-24730955

ABSTRACT

An analytical model for energy absorption during the interaction of an ultrashort, ultraintense laser with an overdense plasma is proposed. Both the compression effect of the electron density profile and the oscillation of the electron plasma surface are self-consistently included, which exhibit significant influences on the laser energy absorption. Based on our model, the general scaling law of the compression effect depending on laser strength and initial density is derived, and the temporal variation of the laser absorption due to the boundary oscillating effect is presented. It is found that due to the oscillation of the electron plasma surface, the laser absorption rate will vibrate periodically at ω or 2ω frequency for the p-polarized and s-polarized laser, respectively. The effect of plasma collision on the laser absorption has also been investigated, which shows a considerable rise in absorption with increasing electron-ion collision frequency for both polarizations.

9.
Opt Express ; 21(19): 22558-65, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104145

ABSTRACT

Simultaneous generation of monoenergetic tunable protons and carbon ions from intense laser multi-component nanofoil interaction is demonstrated by using particle-in-cell simulations. It is shown that, the protons with the largest charge-to-mass ratio are instantly separated from other ion species and are efficiently accelerated in the "phase stable" way. The carbon ions always ride on the heavier oxygen ion front with an electron-filling gap between the protons and carbon ions. At the cost of widely spread oxygen ions, monoenergetic collimated protons and carbon ions are obtained simultaneously. By modulating the heavier ion densities in the foil, it is capable to control the final beam quality, which is well interpreted by a simple analytical model.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046403, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680582

ABSTRACT

An electron injection regime in laser wake-field acceleration, namely electron bow-wave injection, is investigated by two- and three-dimensional particle-in-cell simulation as well as analytical model. In this regime electrons in the intense electron bow wave behind the first bubble catch up with the bubble tail and are trapped by the bubble finally, resulting in considerable enhancement of the total trapped electron number. For example, with the increase of the laser intensity from 2 × 10(19) to 1 × 10(20) W/cm(2), the electron trapping changes from normal self-injection to bow-wave injection and the trapped electron number is enhanced by two orders of magnitude. An analytical model is proposed to explain the numerical observation.

SELECTION OF CITATIONS
SEARCH DETAIL
...