Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(20): e2208365, 2023 May.
Article in English | MEDLINE | ID: mdl-36624569

ABSTRACT

This decade has witnessed the tremendous progress in miniaturizing optical imaging systems. Despite the advancements in 3D printing optical lenses at increasingly smaller dimensions, challenges remain in precisely manufacturing the dimensionally compatible optomechanical components and assembling them into a functional imaging system. To tackle this issue, the use of 3D printing to enable digitalized optomechanical component manufacturing, part-count-reduction design, and the inclusion of passive alignment features is reported here, all for the ease of system assembly. The key optomechanical components of a penny-sized accommodating optical microscope are 3D printed in 50 min at a significantly reduced unit cost near $4. By actuating a built-in voice-coil motor, its accommodating capability is validated to focus on specimens located at different distances, and a focus-stacking function is further utilized to greatly extend depth of field. The microscope can be readily customized and rapidly manufactured to respond to task-specific needs in form factor and optical characteristics.

2.
Adv Mater ; 33(11): e2005672, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33533141

ABSTRACT

3D printing, formally known as additive manufacturing, creates complex geometries via layer-by-layer addition of materials. While 3D printing has been historically perceived as the static addition of build layers, 3D printing is now considered as a dynamic assembly process. In this context, here a new 3D printing process is reported that executes full degree-of-freedom (DOF) transformation (translating, rotating, and scaling) of each individual building layer while utilizing continuous fabrication techniques. Transforming individual building layers within the sequential layered manufacturing process enables dynamic transformation of the 3D printed parts on-the-fly, eliminating the time-consuming redesign steps. Preserving the locality of the transformation to each layer further enables the discrete conformal transformation, allowing objects such as vascular scaffolds to be optimally fabricated to properly fit within specific patient anatomy obtained from the magnetic resonance imaging (MRI) measurements. Finally, exploiting the freedom to control the orientation of each individual building layer, multimaterials, multiaxis 3D printing capability are further established for integrating functional modules made of dissimilar materials in 3D printed devices. This final capability is demonstrated through 3D printing a soft pneumatic gripper via heterogenous integration of rigid base and soft actuating limbs.

3.
Invest Ophthalmol Vis Sci ; 61(2): 23, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32068793

ABSTRACT

Purpose: To validate the ability of visible-light optical coherence tomography (vis-OCT) in imaging the full Schlemm's canal (SC) and its surrounding limbal vascular network in mice in vivo through a compound circumlimbal scan. Methods: We developed an anterior segment vis-OCT system and a compound circumlimbal scanning method, which montages eight rotated raster scans. We calibrated the circumlimbal scan geometry using a three-dimensional printed phantom eyeball before imaging wild-type C57BL/6J mice. We measured SC size by segmenting SC cross sections from vis-OCT B-scan images and imaged the limbal microvascular network using vis-OCT angiography (vis-OCTA). To introduce changes in SC size, we used a manometer to adjust the intraocular pressure (IOP) to different levels. To create additional optical scattering contrast to enhance SC imaging, we surgically increased the episcleral venous pressure (EVP) and caused blood reflux into SC. Results: Using the compound circumlimbal scan, our anterior segment vis-OCT noninvasively imaged the full SC and limbal microvascular network in mouse for the first time. We observed an average 123% increase in SC volume when we decreased the IOP by 10 mm Hg from the baseline IOP of 7 to 10 mm Hg and an average 72% decrease in SC volume when the IOP level was elevated by 10 mm Hg from the baseline IOP. We also observed location-dependent SC size responses to IOP changes. Blood reflux caused by increased EVP enabled vis-OCTA to directly visualize SC, which matched well with the segmented SC. Conclusions: Vis-OCT and vis-OCTA can accurately image the entire SC and limbal microvascular network in vivo using the compound circumlimbal scan. Vis-OCT is also able to quantitatively measure SC responses to changing IOP levels.


Subject(s)
Limbus Corneae , Sclera , Tomography, Optical Coherence/methods , Animals , Limbus Corneae/blood supply , Limbus Corneae/diagnostic imaging , Mice , Mice, Inbred C57BL , Sclera/blood supply , Sclera/diagnostic imaging
4.
Appl Opt ; 58(9): 2248-2255, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-31044927

ABSTRACT

We developed transmission diffraction grating-based spectroscopic single-molecule localization microscopy (sSMLM) to collect the spatial and spectral information of single-molecule blinking events concurrently. We characterized the spectral heterogeneities of multiple far-red emitting dyes in a high-throughput manner using sSMLM. We also investigated the influence of spectral dispersion on the single-molecule identification performance of fluorophores with large spectral overlapping. The careful tuning of spectral dispersion in grating-based sSMLM permitted simultaneous three-color super-resolution imaging in fixed cells with a single objective lens at a relatively low photon budget. Our sSMLM has a compact optical design and can be integrated with conventional localization microscopy to provide add-on spectroscopic analysis capability.

5.
Int J Ophthalmol ; 11(12): 1902-1908, 2018.
Article in English | MEDLINE | ID: mdl-30588420

ABSTRACT

AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye. METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18min. An independently designed novel ocular contact-type temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) of each of the central retinal artery (CRA), long posterior ciliary artery (LPCA), and ophthalmic artery (OA), as well as the mean velocity (Vm) of the central retinal vein (CRV), were measured using a color Doppler flow imaging (CDFI) technique and expressed as mean values with standard deviation (mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the Vm of the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future.

6.
Adv Sci (Weinh) ; 5(7): 1800122, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027044

ABSTRACT

It is of great interest and big challenge to control the collective behaviors of nanomotors to mimic the aggregation/separation behavior of biological systems. Here, a light-acoustic combined method is proposed to control the aggregation/separation of artificial nanomotors. It is shown that nanomotors aggregate at the pressure node in acoustic field and afterward present a collective "firework" separation behavior induced by light irradiation. The collective behavior is found to be applicable for metallic materials and polymers even different light wavelengths are used. Physical insights on the collective firework behavior resulting from the change of acoustic streaming caused by optical force are provided. It is found that diffusion velocity and diffusion region of cluster can be controlled by adjusting light intensity and acoustic excitation voltage, and irradiation direction, respectively. This harmless, controllable, and widely applicable method provides new possibilities for groups of nanomachines, drug release, and cargo transport in nanomedicine and nanosensors.

7.
ACS Nano ; 11(9): 9268-9275, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28803481

ABSTRACT

Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

8.
Small ; 12(44): 6098-6105, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27600373

ABSTRACT

The swimming locomotion of fish involves a complex interplay between a deformable body and induced flow in the surrounding fluid. While innovative robotic devices, inspired by physicomechanical designs evolved in fish, have been created for underwater propulsion of large swimmers, scaling such powerful locomotion into micro-/nanoscale propulsion remains challenging. Here, a magnetically propelled fish-like artificial nanoswimmer is demonstrated that emulates the body and caudal fin propulsion swimming mechanism displayed by fish. To mimic the deformable fish body for periodic shape changes, template-electrosynthesized multisegment nanowire swimmers are used to construct the artificial nanofishes (diameter 200 nm; length 4.8 µm). The resulting nanofish consists a gold segment as the head, two nickel segments as the body, and one gold segment as the caudal fin, with three flexible porous silver hinges linking each segment. Under an oscillating magnetic field, the propulsive nickel elements bend the body and caudal fin periodically to generate travelling-wave motions with speeds exceeding 30 µm s-1 . The propulsion dynamics is studied theoretically using the immersed boundary method. Such body-deformable nanofishes exhibit a high swimming efficiency and can serve as promising biomimetic nanorobotic devices for nanoscale biomedical applications.


Subject(s)
Biomimetics/instrumentation , Fishes/physiology , Magnetic Phenomena , Nanoparticles/chemistry , Swimming/physiology , Animals , Computer Simulation , Locomotion , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...