Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Spine (Phila Pa 1976) ; 49(15): E229-E238, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38721831

ABSTRACT

STUDY DESIGN: Finite element analysis. OBJECTIVE: To investigate the biomechanical effect of four posterior fixation techniques on stability and adjacent segment degeneration in treating thoracolumbar burst fractures with osteoporosis. SUMMARY OF BACKGROUND DATA: In terms of stability and adjacent segment degeneration, there remains no consensus or guidelines on the optimal technique for the treatment of thoracolumbar burst fractures in patients with osteoporosis. MATERIALS AND METHODS: Images of CT scans were imported into MIMICS and further processed by Geomagic to build three-dimensional models of the T10-L5 region. A v-shaped osteotomy was performed on the L1 vertebral body to simulate a burst fracture in the setting of osteoporosis. Subsequently, four fixation techniques were designed using SolidWorks software. Range of motion (ROM) of the global spine, ROM distribution, ROM of adjacent segment, Von Mises stress on adjacent intervertebral disks, and facet joints were analyzed. RESULTS: Among the four groups, the cortical bone screw fixation (CBT) showed the highest global ROM at 1.86°, while long-segmented pedicle screw fixation (LSPS) had the lowest global ROM at 1.25°. The LSPS had the smallest percentage of ROM of fractured vertebral body to fixed segment at 75.04%, suggesting the highest stability after fixation. The maximum ROM of the adjacent segment was observed in the CBT at 1.32°, while the LSPS exhibited the smallest at 0.89°. However, the LSPS group experienced larger maximum stress on the adjacent intervertebral disks (9.60 MPa) and facet joints (3.36 MPa), indicating an increasing risk of adjacent segment disease. CONCLUSION: LSPS provided the greatest stability, while CBT provided the smallest amount of stability. However, the elevated stress on adjacent intervertebral disks and facet joints after LSPS fixation increased the possibility of adjacent segment degeneration. Cement-augmented pedicle screw fixation (CAPS) and combined cortical bone screw and pedicle screw fixation (CBT-PS) demonstrated significant biomechanical advantages in providing moderate fixation strength while reducing stress on the intervertebral disks and facet joints.


Subject(s)
Finite Element Analysis , Fracture Fixation, Internal , Lumbar Vertebrae , Osteoporosis , Spinal Fractures , Thoracic Vertebrae , Humans , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Thoracic Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Lumbar Vertebrae/injuries , Lumbar Vertebrae/diagnostic imaging , Spinal Fractures/surgery , Spinal Fractures/diagnostic imaging , Biomechanical Phenomena , Fracture Fixation, Internal/methods , Osteoporosis/surgery , Osteoporosis/complications , Range of Motion, Articular , Pedicle Screws , Male , Middle Aged
3.
Front Bioeng Biotechnol ; 12: 1346850, 2024.
Article in English | MEDLINE | ID: mdl-38318194

ABSTRACT

Objective: To investigate the biomechanical properties of the retropharyngeal reduction plate by comparing the traditional posterior pedicle screw-rod fixation by finite element analysis. Methods: Two three-dimensional finite element digital models of the retropharyngeal reduction plate and posterior pedicle screw-rod fixation were constructed and validated based on the DICOM (Digital Imaging and Communications in Medicine) data from C1 to C4. The biomechanical finite element analysis values of two internal fixations were measured and calculated under different conditions, including flexion, extension, bending, and rotation. Results: In addition to the backward extension, there was no significant difference in the maximum von Mises stress between the retropharyngeal reduction plate and posterior pedicle screw fixation under other movement conditions. The retropharyngeal reduction plate has a more uniform distribution under different conditions, such as flexion, extension, bending, and rotation. The stress tolerance of the two internal fixations was basically consistent in flexion, extension, left bending, and right bending. Conclusion: The retropharyngeal reduction plate has a relatively good biomechanical stability without obvious stress concentration under different movement conditions. It shows potential as a fixation option for the treatment of atlantoaxial dislocation.

4.
Eur Spine J ; 33(3): 1098-1108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38153529

ABSTRACT

PURPOSE: This study aimed to establish a nomogram to predict the risk of venous thromboembolism (VTE), identifying potential risk factors, and providing theoretical basis for prevention of VTE after spinal surgery. METHODS: A retrospective analysis was conducted on 2754 patients who underwent spinal surgery. The general characteristics of the training group were initially screened using univariate logistic analysis, and the LASSO method was used for optimal prediction. Subsequently, multivariate logistic regression analysis was performed to identify independent risk factors for postoperative VTE in the training group, and a nomogram for predict risk of VTE was established. The discrimination, calibration, and clinical usefulness of the nomogram were separately evaluated using the C-index, receiver operating characteristic curve, calibration plot and clinical decision curve, and was validated using data from the validation group finally. RESULTS: Multivariate logistic regression analysis identified 10 independent risk factors for VTE after spinal surgery. A nomogram was established based on these independent risk factors. The C-index for the training and validation groups indicating high accuracy and stability of the model. The area under the receiver operating characteristic curve indicating excellent discrimination ability; the calibration curves showed outstanding calibration for both the training and validation groups. Decision curve analysis showed the clinical net benefit of using the nomogram could be maximized in the probability threshold range of 0.01-1. CONCLUSION: Patients undergoing spinal surgery with elevated D-dimer levels, prolonger surgical, and cervical surgery have higher risk of VTE. The nomogram can provide a theoretical basis for clinicians to prevent VTE.


Subject(s)
Nomograms , Venous Thromboembolism , Humans , Retrospective Studies , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Neurosurgical Procedures , Neck , Risk Factors
5.
Int J Nanomedicine ; 18: 307-322, 2023.
Article in English | MEDLINE | ID: mdl-36700146

ABSTRACT

Background: Successful treatment of infectious bone defect remains a major challenge in the orthopaedic field. At present, the conventional treatment for infectious bone defects is surgical debridement and long-term systemic antibiotic use. It is necessary to develop a new strategy to achieve effective bone regeneration and local anti-infection for infectious bone defects. Methods: Firstly, vancomycin / poly (lactic acid-glycolic acid) sustained release microspheres (VAN/PLGA-MS) were prepared. Then, through the dual-nozzle 3D printing technology, VAN/PLGA-MS was uniformly loaded into the pores of nano-hydroxyapatite (n-HA) and polylactic acid (PLA) scaffolds printed in a certain proportion, and a composite scaffold (VAN/MS-PLA/n-HA) was designed, which can not only promote bone repair but also resist local infection. Finally, the performance of the composite scaffold was evaluated by in vivo and in vitro biological evaluation. Results: The in vitro release test of microspheres showed that the release of VAN/PLGA-MS was relatively stable from the second day, and the average daily release concentration was about 15.75 µg/mL, which was higher than the minimum concentration specified in the guidelines. The bacteriostatic test in vitro showed that VAN/PLGA-MS had obvious inhibitory effect on Staphylococcus aureus ATCC-29213. Biological evaluation of VAN/MS-PLA/n-HA scaffolds in vitro showed that it can promote the proliferation of adipose stem cells. In vivo biological evaluation showed that VAN/MS-PLA/n-HA scaffold could significantly promote bone regeneration. Conclusion: Our research shows that VAN/MS-PLA/n-HA scaffolds have satisfying biomechanical properties, effectively inhibit the growth of Staphylococcus aureus, with good biocompatibility, and effectiveness on repairing bone defects. The VAN/MS-PLA/n-HA scaffold provide the clinic with an application prospect in bone tissue engineering.


Subject(s)
Durapatite , Vancomycin , Durapatite/pharmacology , Vancomycin/pharmacology , Tissue Scaffolds , Microspheres , Delayed-Action Preparations/pharmacology , Bone Regeneration , Polyesters/pharmacology , Printing, Three-Dimensional , Osteogenesis
6.
Orthop Surg ; 14(3): 522-529, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35098677

ABSTRACT

OBJECTIVE: To evaluate the placement feasibility and safety of the newly designed retropharyngeal reduction plate by cadaveric test and to perform morphometric trajectory analysis. METHODS: The five cadaveric specimens with intact atlantoaxial joint were enrolled in this study. They were used for simulating the placement process and evaluating the placement feasibility of the retropharyngeal reduction plate. The atlantoaxial dislocation (AAD) of five cadaveric specimens were obtained by proper external force after dissecting ligaments. The retropharyngeal reduction plate was placed on atlantoaxial joint of cadaveric specimens. The X-ray and three-dimensional (3D) spiral CT were used for evaluating the placement safety of retropharyngeal reduction plate. The DICOM data was obtained after 3D spiral CT scanning for the morphometric trajectory analysis. RESULTS: The reduction plates were successfully placed on the atlantoaxial joint of five cadaveric specimens through the retropharyngeal approach, respectively. The X-ray and 3D spiral CT showed the accurate screw implantation and satisfying plate placement. The length of the left/right atlas screw trajectory (L/RAT) was, respectively, 1.73 ± 0.01 cm (LAT) and 1.71 ± 0.02 cm (RAT). The length of odontoid screw trajectory (OST) was 1.38 ± 0.02 cm. The length of the left/right axis screw trajectory (L/RAXT) was, respectively, 1.67 ± 0.02 cm (LAXT) and 1.67 ± 0.01 cm (RAXT). There was no statistical significance between left side and right side in terms of AT and AXT (P > 0.05). The angles of atlas screw trajectory angle (ASTA), axis screw trajectory angle (AXSTA), and odontoid screw trajectory angle (OSTA) were 38.04° ± 2.03°, 56.92° ± 2.66°, and 34.78° ± 2.87°, respectively. CONCLUSION: The cadaveric test showed that the retropharyngeal reduction plate is feasible to place on the atlantoaxial joint, which is also a safe treatment choice for atlantoaxial dislocation. The meticulous preoperative planning of screw trajectory based on individual differences was also vital to using this technique.


Subject(s)
Atlanto-Axial Joint , Joint Dislocations , Spinal Fusion , Atlanto-Axial Joint/diagnostic imaging , Atlanto-Axial Joint/surgery , Bone Plates , Bone Screws , Cadaver , Humans , Joint Dislocations/diagnostic imaging , Joint Dislocations/surgery , Tomography, X-Ray Computed
7.
J Cancer ; 12(6): 1575-1582, 2021.
Article in English | MEDLINE | ID: mdl-33613744

ABSTRACT

Background: Small cell lung cancer (SCLC) represents about 13% of lung cancer cases, which is highly invasive and has a high mortality rate, with the 5-year overall survival (OS) rate being only 6.3%. Age at diagnosis of advanced SCLC is much older, but studies describing the ageing factor for distant metastasis patterns and prognosis of extensive-stage SCLC (ES-SCLC) are limited. Methods: Using the Surveillance, Epidemiology, and End Results (SEER) registry, we identified 18,682 patients with ES-SCLC (9,089 women and 9,053 men) who had complete clinical information between 2008 and 2015. Patients were classified into three groups (older group: ≥80 yrs, middle-aged group: 60-79 yrs, and younger group: ≤59 yrs). The role of different age at diagnosis of ES-SCLC (especially older group) in metastasis patterns was investigated, and OS and cancer-specific survival (CSS) of different age groups of metastatic ES-SCLC was assessed. Results: The most metastasis of ES-SCLC patients in the three groups was multiorgan metastases (MOM) metastasis (71.2%, 70.3% and 66.3%, respectively), the most single organ metastasis in the younger group was the lung (3.3%), the middle-aged group and the older group were the brain (3.5%, 3.1%, respectively). The analysis revealed that older patients were less likely to have MOM, but more likely to have all organs metastases than other two groups (p<0.001). Older group had the worst OS (p<0.001) and CSS (p<0.001). Furthermore, Radiotherapy and chemotherapy can improve survival (p<0.001), but the rate of radiotherapy and chemotherapy in older patients is lower than that in middle-aged and younger patients (50.4% vs 38.6% vs 20.7%, p<0.05). Compared with other two group, older group (odds ratios, ORs) for lung, all organ metastases, and MOM were 0.43 (95% CI 0.27-0.67), 1.77 (95% CI 1.55-2.03), 0.68 (95% CI 0.6-0.77), respectively. Conclusion: The mortality risk is highest with MOM and all organs metastasis followed by brain, lung, bone and liver metastases in elderly ES-SCLC patients. These results will be helpful for pre-treatment evaluation regarding the prognosis of ES-SCLC patients.

8.
J Clin Lab Anal ; 34(7): e23392, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32506726

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a pandemic that has rapidly spread worldwide. Increasingly, confirmed patients being discharged according to the current diagnosis and treatment protocols, follow-up of convalescent patients is important to knowing about the outcome. METHODS: A retrospective study was performed among 98 convalescent patients with COVID-19 in a single medical center. The clinical features of patients during their hospitalization and 2-week postdischarge quarantine were collected. RESULTS: Among the 98 COVID-19 convalescent patients, 17 (17.3%) were detected positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid during 2-week postdischarge quarantine. The median time from discharge to SARS-CoV-2 nucleic acid re-positive was 4 days (IQR, 3-8.5).The median time from symptoms onset to final respiratory SARS-CoV-2 detection of negative result was significantly longer in re-positive group (34 days [IQR, 29.5-42.5]) than in non-re-positive group (19 days [IQR, 16-26]). On the other hand, the levels of CD3-CD56 + NK cells during hospitalization and 2-week postdischarge were higher in re-positive group than in non-re-positive group (repeated measures ANOVA, P = .018). However, only one case in re-positive group showed exudative lesion recurrence in pulmonary computed tomography (CT) with recurred symptoms. CONCLUSION: It is still possible for convalescent patients to show positive for SARS-CoV-2 nucleic acid detection, but most of the re-positive patients showed no deterioration in pulmonary CT findings. Continuous quarantine and close follow-up for convalescent patients are necessary to prevent possible relapse and spread of the disease to some extent.


Subject(s)
Betacoronavirus/physiology , Convalescence , Coronavirus Infections/diagnosis , Nucleic Acids/analysis , Pneumonia, Viral/diagnosis , Adult , COVID-19 , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Male , Middle Aged , Pandemics , Patient Discharge , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Treatment Outcome
9.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(2): 158-164, 2019 04 25.
Article in Chinese | MEDLINE | ID: mdl-31309753

ABSTRACT

OBJECTIVE: To investigate the effect of low-frequency pulsed electromagnetic fields (PEMF) on the maturation and mineralization of rat cranial osteoblasts in vitro and its relation to IGF-1R/NO signaling pathway. METHODS: The rat osteoblasts were isolated and cultured in vitro and randomly divided into blank control group, PEMF group, GSK group (IGF-1R blocker) and PEMF+GSK group. The cells were treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. After 3 d of PEMF treatment, the expressions of protein kinase (AKT), inducible nitric oxide synthase (iNOS) and cGMP-dependent protein kinase (PKG) were detected by Western blotting; on 6 d of PEMF treatment alkaline phosphatase (ALP) activity was determined; on 12 d of PEMF treatment the calcification nodule formation was demonstrated by Alizarin red staining. RESULTS: NO level was significantly increased in rat osteoblasts treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. Western blot analysis showed that the expressions of AKT, iNOS and PKG protein in PEMF group were higher than those in the control group (all P<0.01); the ALP activity was increased(P<0.05), and the PEMF group had the largest area of Alizarin red staining (P<0.01). The expressions of AKT, iNOS and PKG protein in GSK group were lower than those in the control group; the ALP activity was decreased (P<0.05), and the GSK group had the least area of Alizarin red staining (P<0.01). The expressions of AKT, iNOS, PKG protein, the ALP activity and the area of Alizarin red staining in PEMF+GSK group were between PEMF group and GSK group. CONCLUSIONS: PEMF may enhance the maturation and mineralization of rat cranial osteoblasts in vitro through IGF-1R/NO signaling pathway.


Subject(s)
Electromagnetic Fields , Osteoblasts , Signal Transduction , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Nitric Oxide/metabolism , Osteoblasts/radiation effects , Rats , Receptor, IGF Type 1/metabolism , Signal Transduction/radiation effects
10.
Zhongguo Zhong Yao Za Zhi ; 44(3): 535-540, 2019 Feb.
Article in Chinese | MEDLINE | ID: mdl-30989919

ABSTRACT

To investigate the preventive effect and possible mechanism of puerarin(Pur) in rat model of disuse osteoporosis(DOP),thirty healthy Wistar female rats of 2 months old were randomly divided into control group(Control), hindlimb suspension group(HLS), and puerarin group(HLS+Pur) in hindlimb suspension, with 10 rats in each group. A disuse osteoporosis model was established by tail suspension method, and 15.4 mg·kg~(-1) puerarin suspension was administered to HLS+Pur group every day, and the same volume of distilled water was administered to Control group and HLS group respectively. After 28 days, the rats were sacrificed by abdominal aorta blood collection, the main organs of the rats were removed, and the bone tissues of the rats were dissected. The organ index of the rats was calculated and the histopathology of the organs was observed under microscope. Bone mineral density test and bone biomechanical experiment were performed. Bone histomorphometry results were observed after bone tissue sectioning, and serum biochemical markers of bone metabolism were determined. There was no significant difference in organ index between the groups. There was no obvious abnormality in the pathological examination of the organs. The results of bone mineral density showed that puerarin could significantly increase the bone density of the tibia and vertebrae caused by hindlimb suspension. The mechanical parameters experiments showed that puerarin could effectively increase the maximum load and elastic modulus of the tibia and vertebrae. Fluorescence labeling showed that the fluorosis interval increased and the bone formation increased during puerarin treatment. The VG staining results showed that compared with the HLS group, in the puerarin group, the number of trabecular bone increased, the thickness of the trabecular bone became thicker, and the bone separation became smaller, which greatly improved the bone microstructure after hindlinb suspension. In addition, serum biochemical indicators showed that puerarin could promote bone formation index bone calcium. The content of osteocalcin(OC) increased and inhibited the formation of tartrate-resistant acid phosphatase 5 b(TRACP 5 b). Puerarin has a preventive effect in the rat model of disuse osteoporosis and its effect is good, and its mechanism may be related to promoting bone formation and inhibiting bone resorption.


Subject(s)
Bone Density , Isoflavones/pharmacology , Osteoporosis/drug therapy , Animals , Female , Osteocalcin/metabolism , Rats , Rats, Wistar , Tartrate-Resistant Acid Phosphatase/metabolism
11.
J Bone Miner Res ; 34(7): 1336-1351, 2019 07.
Article in English | MEDLINE | ID: mdl-30779853

ABSTRACT

Extremely low-frequency electromagnetic fields have been considered a potential candidate for the prevention and treatment of osteoporosis; however, their action mechanism and optimal magnetic flux density (intensity) parameter are still elusive. The present study found that 50-Hz sinusoidal electromagnetic fields (SEMFs) at 1.8 mT increased the peak bone mass of young rats by increasing bone formation. Gene array expression studies with femoral bone samples showed that SEMFs increased the expression levels of collagen-1α1 and Wnt10b, a critical ligand of the osteogenic Wnt/ß-catenin pathway. Consistently, SEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) in vitro through activating the Wnt10b/ß-catenin pathway. This osteogenesis-promoting effect of SEMFs via Wnt10b/ß-catenin signaling was found to depend on the functional integrity of primary cilia in osteoblasts. When the primary cilia were abrogated by small interfering RNA (siRNA) targeting IFT88, the ability of SEMFs to promote the osteogenic differentiation of ROBs through activating Wnt10b/ß-catenin signaling was blocked. Although the knockdown of Wnt10b expression with RNA interference had no effect on primary cilia, it significantly suppressed the promoting effect of SEMFs on osteoblastic differentiation/maturation. Wnt10b was normally localized at the bases of primary cilia, but it disappeared (or was released) from the cilia upon SEMF treatment. Interestingly, primary cilia were elongated to different degrees by different intensities of 50-Hz SEMFs, with the window effect observed at 1.8 mT, and the expression level of Wnt10b increased in accord with the lengths of primary cilia. These results indicate that 50-Hz 1.8-mT SEMFs increase the peak bone mass of growing rats by promoting osteogenic differentiation/maturation of osteoblasts, which is mediated, at least in part, by Wnt10b at the primary cilia and the subsequent activation of Wnt/ß-catenin signaling. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Bone and Bones/anatomy & histology , Cilia/metabolism , Electromagnetic Fields , Osteoblasts/metabolism , Wnt Proteins/metabolism , Animals , Animals, Newborn , Calcification, Physiologic , Cell Differentiation , Cells, Cultured , Female , Femur/metabolism , Gene Expression Regulation , Organ Size , Osteogenesis/genetics , Rats, Sprague-Dawley , Signal Transduction , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...