Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 51(2)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317274

ABSTRACT

The nontrivial Berry curvature and chiral anomaly result in plenty of interesting magnetotransport and magneto-thermoelectric transport phenomena in Weyl semimetals, two of which are the planar Hall effect and planar Nernst effect. Based on the semi-classical Boltzmann theory, we theoretically study the in-plane magnetotransport coefficients (including electric conductivity, thermoelectric conductivity and Nernst thermopower) for both type-I and type-II Weyl semimetals using a linearized low-energy Hamiltonian. We find that for tilt-coplanar setup where the electric field (or temperature gradient) is applied along the tilted direction of the Weyl nodes, the planar Hall conductivity (or planar Nernst thermopower) shows a magnetic field linear dependence. And these linear responses do no obey the reportedcosθsinθdependence on the angleθbetween the magnetic and electric field for planar Hall effect. For tilt-perpendicular setup where the applied field (Eor∇T) and magnetic field are perpendicular to the tilted direction, the planar Hall conductivity (or planar Nernst thermopower) mainly follows a magnetic field quadratic dependence, and it satisfies thecosθsinθcharacteristic. There are also anomalous Hall effect and anomalous Nernst effect in the plane perpendicular to the tilted direction of the two oppositely tilted Weyl nodes. These findings can be verified experimentally by changing the direction and magnitude of the in-plane magnetic field.

2.
Materials (Basel) ; 14(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683553

ABSTRACT

For expanding applications of spongy graphene aerogels (GAs) cost-effectively, we report a marriage of the two-step hydrothermal reduction and atmospheric drying method to fabricate a spongy CNC-graphene aerogel (CNG) with oil/water selectivity and tunable mechanical strength by a low-cost and straightforward approach. The reduced graphene oxide (rGO) with CNC by the ice-templated method can give rise to forming the hierarchical structure of hybrid GAs within the PUS network. Meanwhile, the fractured structure of PUS with a pre-compressive step arouses more versatility and durability, involving its selective and high-volume absorbability (up to 143%). The enhanced elastic modulus and more significant swelling effect than pure sponge materials give it a high potential for durable wastewater treatment.

3.
J Phys Condens Matter ; 33(18)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33711830

ABSTRACT

Weyl semimetals (WSMs) display many unusual magnetotransport phenomena. Here, based on the Landau quantization and Boltzmann equation, we theoretically study the longitudinal magnetoconductivity for tilted type-I WSMs from weak to strong magnetic field within a unified framework. It is found that, in semiclassical (weak magnetic field) regime, the conductivity has an angular dependentB-linear term besides theB-quadratic term common to isotropic nodes. In ultra-quantum (strong magnetic field) regime, the magnetoconductivity shows a linear dependence onB, and this dependence is affected by the tilt. In the intermediate regime, magnetoconductivity shows a tilt-modified quantum oscillation behavior due to the oscillation in the density of state. These findings recover the results for isotropic nodes without tilt, and suggest a possible way to identify the tilt axis of tilted WSMs through magnetotransport experiment.

4.
ACS Appl Mater Interfaces ; 7(48): 26701-8, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26562354

ABSTRACT

Layered transition metal dichalcogenides (TMDs) have been proven to be essential building blocks for the high-performance optoelectronic devices as a result of their favorable bandgaps, extraordinary light absorption, and closed surface electronic structures. However, the in-depth exploration of their operating mechanism as insertion layers in heterojunction photodetectors is scarce. Here, we demonstrate that a Bi/Si heterojunction photodetector can achieve a superior performance by inserting a WS2 layer. A high photosensitivity of 1.4 × 10(8) cm(2)/W and an outstanding detectivity of 1.36 × 10(13) cm Hz(1/2) W(-1) are obtained, which are comparable or even surpass those of state-of-art commercial photodetectors. The working mechanism of the Bi/WS2/Si sandwich-structured photodetector is unveiled, including the efficient passivation of the interface, enhancement of light absorption, and selective carrier blocking. Finally, a good voltage tunability of the photoresponse is also demonstrated. These findings are significant to the deep understanding on the integration of layered TMDs with conventional semiconductors, and they provide an attractive methodology to develop layered TMDs in a multi-junction system.

5.
Nanoscale ; 7(29): 12535-41, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26138000

ABSTRACT

Broadband photodetection is central to various technological applications including imaging, sensing and optical communications. On account of their Dirac-like surface state, Topological insulators (TIs) are theoretically predicted to be promising candidate materials for broadband photodetection from the infrared to the terahertz. Here, we report a vertically-constructed ultra-broadband photodetector based on a TI Bi2Te3-Si heterostructure. The device demonstrated room-temperature photodetection from the ultraviolet (370.6 nm) to terahertz (118 µm) with good reproducibility. Under bias conditions, the visible responsivity reaches ca. 1 A W(-1) and the response time is better than 100 ms. As a self-powered photodetector, it exhibits extremely high photosensitivity approaching 7.5 × 10(5) cm(2) W(-1), and decent detectivity as high as 2.5 × 10(11) cm Hz(1/2) W(-1). In addition, such a prototype device without any encapsulation suffers no obvious degradation after long-time exposure to air, high-energy UV illumination and acidic treatment. In summary, we demonstrate that TI-based heterostructures hold great promise for addressing the long lasting predicament of stable room-temperature high-performance broadband photodetectors.

6.
Sci Rep ; 4: 5876, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25069391

ABSTRACT

A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

7.
ACS Appl Mater Interfaces ; 6(3): 1759-64, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24417464

ABSTRACT

Two-dimensional (2D) materials are extensively explored due to the remarkable physical property and the great potential for post-silicon electronics since the landmark achievement of graphene. The monolayer (ML) MoS2 with a direct energy gap is a typical 2D material and promising candidate for a wide range of device applications. The extensive efforts so far have focused on the optical valley control applications of ML MoS2 rather than the electrical control of spin and valley transport. However, the electrical manipulation of spin injection and transport is essential to realize practical spintronics applications. Here, we theoretically demonstrated that the valley and spin transport can be electrically manipulated by a gate voltage in a normal/ferromagnetic/normal monolayer MoS2 junction device. It was found that the fully valley- and spin-polarized conductance can be achieved due to the spin-valley coupling of valence-band edges together with the exchange field, and both the amplitude and direction of the fully spin-polarized conductance can be modulated by the gate voltage. These findings not only provided deep understanding to the basic physics in the spin and valley transport of ML MoS2 but also opened an avenue for the electrical control of valley and spin transport in monolayer dichalcogenide-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...