Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Appl Microbiol ; 67(1): 33-41, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33229814

ABSTRACT

O-GlcNAc modification mediated by O-GlcNAc transferase (OGT) is a reversible protein modification in which O-GlcNAc moieties are attached to target proteins in the cytosol, nucleus, and mitochondria. O-GlcNAc moieties attached to proteins can be removed by O-GlcNAcase (OGA). The addition of an O-GlcNAc moiety can influence several aspects of protein function, and aberrant O-GlcNAc modification is linked to a number of diseases. While OGT and OGA are conserved across eukaryotic cells, yeasts lack these enzymes. Previously, we reported that protein O-GlcNAc modification occurred in the budding yeast Saccharomyces cerevisiae when OGT was ectopically expressed. Because yeast cells lack OGA, O-GlcNAc moieties are stably attached to target proteins. Thus, the yeast system may be useful for finding novel OST substrates. By proteomic analysis, we identified 468 O-GlcNAcylated proteins in yeast cells expressing human OGT. Among these proteins, 13 have human orthologues that show more than 30% identity to their corresponding yeast orthologue, and possible glycosylation residues are conserved in these human orthologues. In addition, the orthologues have not been reported as substrates of OGT. We verified that some of these human orthologues are O-GlcNAcylated in cultured human cells. These proteins include an ubiquitin-conjugating enzyme, UBE2D1, and an eRF3-similar protein, HBS1L. Thus, the yeast system would be useful to find previously unknown O-GlcNAcylated proteins and regulatory mechanisms.


Subject(s)
N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/isolation & purification , N-Acetylglucosaminyltransferases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Gene Expression Regulation, Fungal , Glycosylation , HEK293 Cells , Humans , Protein Processing, Post-Translational , Proteomics
2.
Biochim Biophys Acta Gen Subj ; 1864(10): 129658, 2020 10.
Article in English | MEDLINE | ID: mdl-32512168

ABSTRACT

BACKGROUND: Syntaxin-1A and Sso1 are syntaxin family SNARE proteins engaged in synaptic vesicle fusion and yeast exocytosis. The syntaxin-1A SNARE motif can form a fusogenic SNARE complex with Sso1 partners. However, a chimera in which the SNARE motif in syntaxin-1A is introduced into Sso1 was not functional in yeast because the chimera is retained in the ER. Through the analysis of the transport defect of Sso1/syntaxin-1A chimeric SNAREs, we found that their SNARE motifs have distinctive properties. METHODS: Sso1, syntaxin-1A, and Sso1/syntaxin-1A chimeric SNAREs were expressed in yeast cells and their localization and interaction with other SNAREs are analyzed. RESULTS: SNARE proteins containing the syntaxin-1A SNARE motif exhibit a transport defect because they form a cis-SNARE complex in the ER. Ectopic SNARE complex formation can be prevented in syntaxin-1A by binding to a Sec1/Munc-18-like (SM) protein. In contrast, the SNARE motif of Sso1 does not form an ectopic SNARE complex. Additionally, we found that the SNARE motif in syntaxin-1A, but not that in Sso1, self-interacts, even when it is in the inactive form and bound to the SM protein. CONCLUSIONS: The SNARE motif in syntaxin-1A, but not in Sso1, likely forms ectopic SNARE complex. Because of this property, the SM protein is necessary for syntaxin-1A to prevent its promiscuous assembly and to promote its export from the ER. GENERAL SIGNIFICANCE: Properties of SNARE motifs affect characteristics of SNARE proteins. The regulatory mechanisms of SNARE proteins are, in part, designed to handle such properties.


Subject(s)
SNARE Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Amino Acid Sequence , Exocytosis , Membrane Fusion , Protein Binding , Protein Interaction Maps , SNARE Proteins/analysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/analysis
3.
Biochim Biophys Acta Gen Subj ; 1863(11): 129396, 2019 11.
Article in English | MEDLINE | ID: mdl-31302181

ABSTRACT

BACKGROUND: Botulinum neurotoxins (BoNTs) prevent synaptic transmission because they hydrolyze synaptic N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). BoNT serotype C (BoNT/C) targets syntaxin-1A and SNAP-25, and is expected to be applied to cosmetic and therapeutic uses. SNAREs are evolutionally conserved proteins and in yeast a syntaxin-1A orthologue Sso1 is involved in exocytosis. The substrate specificity of BoNT/C is strict and it cannot cleave Sso1. METHODS: Domain swapping and mutational screenings were performed to generate functional chimeras SNAREs of syntaxin-1A and Sso1. Such chimeras are expressed in yeast cells and assessed whether they are susceptible to BoNT/C digestion. RESULTS: The Sso1 and syntaxin-1A chimera (Sso1/STX1A), in which the SNARE domain in Sso1 was replaced with that of syntaxin-1A, was not functional in yeast. The functional incompatibility of Sso1/STX1A was attributable to its accumulation in the ER. We found several mutations that could release Sso1/STX1A from the ER to make the chimera functional in yeast. Yeast cells harboring the mutant chimeras grew similarly to wild-type cells. However, unlike wild-type, yeast harboring the mutant chimeras exhibited a severe growth defect upon expression of BoNT/C. Results of further domain swapping analyses suggest that Sso1 is not digested by BoNT/C because it lacks a binding region to BoNT/C (α-exosite-binding region). CONCLUSIONS: We obtained functional Sso1/STX1A chimeras, which can be applied to a yeast cell-based BoNT/C assay. BoNT/C can recognize these chimeras in a similar manner to syntaxin-1A. GENERAL SIGNIFICANCE: The yeast cell-based BoNT/C assay would be useful to characterize and engineer BoNT/C.


Subject(s)
Botulinum Toxins , Qa-SNARE Proteins , Recombinant Fusion Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Syntaxin 1 , Botulinum Toxins/biosynthesis , Botulinum Toxins/genetics , Humans , Qa-SNARE Proteins/biosynthesis , Qa-SNARE Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Syntaxin 1/biosynthesis , Syntaxin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...