Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Chemistry ; : e202401277, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847268

ABSTRACT

The clinical practice of photodynamic therapy of cancer (PDT) is mostly limited to superficial types of skin cancer. The major reason behind this limited applicability is the need for light in the photogeneration of ROS, and in particular singlet oxygen. In order to circumvent this major roadblock, we designed and synthesized naphthalene-derived endoperoxides with mitochondria targeting triphenylphosphonium moieties. Here, we show that these compounds release singlet oxygen by thermal cycloreversion, and initiate cell death with IC50 < 10 µM in cancer cell cultures. The mouse 4T1 breast tumor model study, where the endoperoxide compound was introduced intraperitoneally, also showed highly promising results, with negligible systemic toxicity. Targeted delivery of singlet oxygen to cancer cell mitochondria could be the breakthrough needed to transform Photodynamic Therapy into a broadly applicable methodology for cancer treatment by keeping the central tenet and discarding problematic dependencies on oxygen or external light.

2.
Mol Med ; 30(1): 93, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898476

ABSTRACT

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Subject(s)
Asthma , Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , Wnt-5a Protein , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Epithelial Cells/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Bronchi/metabolism , Bronchi/pathology , Male , Cell Line , Female , Middle Aged , Signal Transduction , Adult
3.
Am J Transl Res ; 16(5): 2082-2102, 2024.
Article in English | MEDLINE | ID: mdl-38883377

ABSTRACT

Programmed cell death (PCD) plays a pivotal role in tumor initiation and progression. However, the prognostic value and clinical characteristics of PCD-related genes (PRGs) remain unclear. We collected and analyzed genes associated with twelve PCD patterns, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis to construct a gene signature. Our analysis identified 215 differentially expressed PRGs out of 1254 in lung adenocarcinoma (LUAD) and normal lung tissues. Subsequently, we performed univariate Cox regression analysis and identified 58 prognostic PRGs. Based on LASSO Cox regression analysis, we constructed a risk score using the expression levels of seven genes: DAPK2, DDIT4, E2F2, GAPDH, MET, PIM2, and FOXF1. Patients with lower risk scores showed earlier stages of cancer, longer survival times, and better immune infiltrations and functions. Notably, we found that knockdown of DDIT4 significantly increased apoptosis and impaired the proliferation of human LUAD cell lines. Our study proposes a PRG-based prognostic signature that sheds light on the potential role of PCD-related genes in LUAD and provides valuable insights into future therapeutic strategies.

4.
Front Pharmacol ; 15: 1389271, 2024.
Article in English | MEDLINE | ID: mdl-38783953

ABSTRACT

Aims: The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients. Methods: Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group. Results: The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance. Conclusion: The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.

5.
J Transl Med ; 22(1): 460, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750462

ABSTRACT

BACKGROUND: Chaperonin Containing TCP1 Subunit 6 A (CCT6A) is a prominent protein involved in the folding and stabilization of newly synthesized proteins. However, its roles and underlying mechanisms in lung adenocarcinoma (LUAD), one of the most aggressive cancers, remain elusive. METHODS: Our study utilized in vitro cell phenotype experiments to assess CCT6A's impact on the proliferation and invasion capabilities of LUAD cell lines. To delve into CCT6A's intrinsic mechanisms affecting glycolysis and proliferation in lung adenocarcinoma, we employed transcriptomic sequencing and liquid chromatography-mass spectrometry analysis. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays were also conducted to substantiate the mechanism. RESULTS: CCT6A was found to be significantly overexpressed in LUAD and associated with a poorer prognosis. The silencing of CCT6A inhibited the proliferation and migration of LUAD cells and elevated apoptosis rates. Mechanistically, CCT6A interacted with STAT1 protein, forming a complex that enhances the stability of STAT1 by protecting it from ubiquitin-mediated degradation. This, in turn, facilitated the transcription of hexokinase 2 (HK2), a critical enzyme in aerobic glycolysis, thereby stimulating LUAD's aerobic glycolysis and progression. CONCLUSION: Our findings reveal that the CCT6A/STAT1/HK2 axis orchestrated a reprogramming of glucose metabolism and thus promoted LUAD progression. These insights position CCT6A as a promising candidate for therapeutic intervention in LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Chaperonin Containing TCP-1 , Disease Progression , Glycolysis , Hexokinase , Lung Neoplasms , STAT1 Transcription Factor , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Hexokinase/metabolism , STAT1 Transcription Factor/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Chaperonin Containing TCP-1/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Apoptosis , Signal Transduction , Neoplasm Invasiveness
6.
Microvasc Res ; 154: 104697, 2024 07.
Article in English | MEDLINE | ID: mdl-38801942

ABSTRACT

Cardiac myxoma is the most common primary cardiac tumor in adults. The histogenesis and cellular composition of myxoma are still unclear. This study aims to reveal the role of myxoma cell components and their gene expression in tumor development. We obtained single living cells by enzymatic digestion of tissues from 4 cases of surgically resected cardiac myxoma. Of course, there was 1 case of glandular myxoma and 3 cases of nonglandular myxoma. Then, 10× single-cell sequencing was performed. We identified 12 types and 11 types of cell populations in glandular myxoma and nonglandular myxoma, respectively. Heterogeneous epithelial cells are the main components of glandular myxoma. The similarities and differences in T cells in both glandular and nonglandular myxoma were analyzed by KEGG and GO. The most important finding was that there was active communication between T cells and epithelial cells. These results clarify the possible tissue occurrence and heterogeneity of cardiac myxoma and provide a theoretical basis and guidance for clinical diagnosis and treatment.


Subject(s)
Heart Neoplasms , Myxoma , Single-Cell Analysis , Humans , Heart Neoplasms/pathology , Heart Neoplasms/genetics , Heart Neoplasms/surgery , Heart Neoplasms/metabolism , Myxoma/pathology , Myxoma/genetics , Myxoma/surgery , Myxoma/metabolism , Female , Male , Middle Aged , Epithelial Cells/pathology , Epithelial Cells/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , T-Lymphocytes/pathology , T-Lymphocytes/metabolism , Aged , Adult , Cell Communication , Gene Expression Regulation, Neoplastic , Transcriptome , Phenotype
7.
Adv Sci (Weinh) ; 11(23): e2310120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647423

ABSTRACT

G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.


Subject(s)
Cryoelectron Microscopy , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Humans , Cryoelectron Microscopy/methods , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , Histamine/metabolism , Histamine/chemistry , Receptors, Histamine H2/metabolism , Receptors, Histamine H2/genetics , Receptors, Histamine H2/chemistry , Receptors, Histamine H3/metabolism , Receptors, Histamine H3/chemistry , Receptors, Histamine H3/genetics , Signal Transduction
8.
Dig Dis Sci ; 69(6): 2184-2192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653945

ABSTRACT

BACKGROUND: The role of endoscopic resection (ER) in gastric gastrointestinal stromal tumors (GISTs) has not been fully elucidated. AIMS: The purpose of this work was to evaluate the clinical effectiveness and safety of ER in patients with GISTs originating from the muscularis propria (MP). METHODS: A total of 233 consecutive patients with gastric GISTs originating from the MP layer, who underwent ER between February 2012 and May 2023, were included in this study. Clinical characteristics, tumor features, and outcomes were recorded and compared between patients who underwent en bloc resection and piecemeal resection. RESULTS: Among the 233 patients, the median size of GISTs was 12 mm (range 5-60 mm). Risk assessment categorized 190 patients as very low risk, 26 as low risk, 10 as moderate risk, and 7 as high risk. The procedures performed included endoscopic submucosal excavation (127 cases), endoscopic full-thickness resection (103 cases), and submucosal tunneling endoscopic resection (3 cases). The complete and R0 resection rate was 93.1%. Complications occurred in 4.7% of cases (perioperative perforations 1.7%, perioperative bleeding 1.3%, both 0.9%), resulting in conversion to surgery in 1.3% of cases. Risk factors associated with piecemeal resection were tumor size [odds ratio (OR) 0.402, 95% confidence interval (CI) 0.207-0.783; P = 0.007] and shape (OR 0.045, 95% CI 0.009-0.235; P < 0.001). CONCLUSIONS: ER is proven to be an effective and reasonably safe approach for gastric GISTs originating from the MP. Notably, larger tumor size and irregular shape are identified as risk factors for piecemeal resection during ER procedures.


Subject(s)
Gastrointestinal Stromal Tumors , Stomach Neoplasms , Humans , Gastrointestinal Stromal Tumors/surgery , Gastrointestinal Stromal Tumors/pathology , Male , Female , Middle Aged , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Aged , Adult , Aged, 80 and over , Endoscopic Mucosal Resection/methods , Endoscopic Mucosal Resection/adverse effects , Gastric Mucosa/surgery , Gastric Mucosa/pathology , Treatment Outcome , Retrospective Studies , Gastroscopy/methods , Gastroscopy/adverse effects , Risk Factors , Postoperative Complications/epidemiology , Postoperative Complications/etiology
9.
Cell ; 187(6): 1460-1475.e20, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38428423

ABSTRACT

Apelin is a key hormone in cardiovascular homeostasis that activates the apelin receptor (APLNR), which is regarded as a promising therapeutic target for cardiovascular disease. However, adverse effects through the ß-arrestin pathway limit its pharmacological use. Here, we report cryoelectron microscopy (cryo-EM) structures of APLNR-Gi1 complexes bound to three agonists with divergent signaling profiles. Combined with functional assays, we have identified "twin hotspots" in APLNR as key determinants for signaling bias, guiding the rational design of two exclusive G-protein-biased agonists WN353 and WN561. Cryo-EM structures of WN353- and WN561-stimulated APLNR-G protein complexes further confirm that the designed ligands adopt the desired poses. Pathophysiological experiments have provided evidence that WN561 demonstrates superior therapeutic effects against cardiac hypertrophy and reduced adverse effects compared with the established APLNR agonists. In summary, our designed APLNR modulator may facilitate the development of next-generation cardiovascular medications.


Subject(s)
Apelin Receptors , Cardiovascular Agents , Drug Design , Apelin Receptors/agonists , Apelin Receptors/chemistry , Apelin Receptors/ultrastructure , Cryoelectron Microscopy , GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Humans , Cardiovascular Agents/chemistry
10.
Acad Radiol ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38418346

ABSTRACT

RATIONALE AND OBJECTIVES: This study investigates the potential of quantitative Contrast-Enhanced Ultrasound (CEUS) parameters to distinguish between graft dysfunction due to rejection and non-rejection in kidney transplant recipients. METHODS: In this retrospective study, 50 kidney transplant patients who presented elevated serum creatinine or proteinuria were analyzed. They were categorized as rejection or non-rejection based on biopsy outcomes. These classifications were applied in both derivation (n = 33) and validation cohorts (n = 17). Prior to the biopsy, all patients underwent a CEUS. Quantitative parameters derived from the CEUS were further analyzed for their consistency and reliability. Additionally, the relationship between the Banff scores, a standard for diagnosing transplant rejections, and these CEUS parameters was explored. RESULTS: Significant differences between rejection and non-rejection groups were observed in the CEUS parameters of derivation cohorts. Specifically, Peak Intensity (PI), 1/2 Descending Time (DT/2), Area Under Curve (AUC), and Mean Transit Time (MTT) stood out. Sensitivity and specificity for these parameters were 76.5% and 87.5% for PI, 76.5% and 81.2% for DT/2, 76.5% and 87.5% for AUC, and 68.8% and 94.1% for MTT, respectively. DT/2 and MTT showed superior interobserver agreement compared to PI and AUC. When extrapolating the cutoff values from the derivation cohort to the validation group, DT/2 and AUC exhibited optimal diagnostic precision with positive and negative predictive values being 91.7% vs. 100% and 100% vs. 85.7%, respectively. Additionally, DT/2 effectively differentiated between mild and moderate to severe microvascular inflammation, pivotal in diagnosing antibody-mediated renal transplant rejection. CONCLUSION: DT/2 from CEUS parameters presents as a reliable tool to differentiate rejection from non-rejection causes in renal transplant dysfunction. Yet, large-scale, multi-center studies are essential for further validation.

11.
Entropy (Basel) ; 26(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38392353

ABSTRACT

The measurement of vertebral rotation angles serves as a crucial parameter in spinal assessments, particularly in understanding conditions such as idiopathic scoliosis. Historically, these angles were calculated from 2D CT images. However, such 2D techniques fail to comprehensively capture the intricate three-dimensional deformities inherent in spinal curvatures. To overcome the limitations of manual measurements and 2D imaging, we introduce an entirely automated approach for quantifying vertebral rotation angles using a three-dimensional vertebral model. Our method involves refining a point cloud segmentation network based on a transformer architecture. This enhanced network segments the three-dimensional vertebral point cloud, allowing for accurate measurement of vertebral rotation angles. In contrast to conventional network methodologies, our approach exhibits notable improvements in segmenting vertebral datasets. To validate our approach, we compare our automated measurements with angles derived from prevalent manual labeling techniques. The analysis, conducted through Bland-Altman plots and the corresponding intraclass correlation coefficient results, indicates significant agreement between our automated measurement method and manual measurements. The observed high intraclass correlation coefficients (ranging from 0.980 to 0.993) further underscore the reliability of our automated measurement process. Consequently, our proposed method demonstrates substantial potential for clinical applications, showcasing its capacity to provide accurate and efficient vertebral rotation angle measurements.

12.
Adv Sci (Weinh) ; 11(14): e2307920, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308196

ABSTRACT

Therapeutic cancer vaccines fail to produce satisfactory outcomes against solid tumors since vaccine-induced anti-tumor immunity is significantly hampered by immunosuppression. Generating an in situ cancer vaccine targeting immunological cold tumor microenvironment (TME) appears attractive. Here, a type of free-field based whole-body ultrasound (US)-driven nanovaccines are constructed, named G5-CHC-R, by conjugating the sonosensitizer, Chenghai chlorin (CHC) and the immunomodulator, resiquimod (R848) on top of a super small-sized dendrimeric nanoscaffold. Once entering tumors, R848 can be cleaved from a hypoxia-sensitive linker, thus modifying the TME via converting macrophage phenotypes. The animals bearing orthotopic pancreatic cancer with intestinal metastasis and breast cancer with lung metastasis are treated with G5-CHC-R under a free-field based whole-body US system. Benefit from the deep penetration capacity and highly spatiotemporal selectiveness, G5-CHC-R triggered by US represented a superior alternative for noninvasive irradiation of deep-seated tumors and magnification of local immune responses via driving mass release of tumor antigens and "cold-warm-hot" three-state transformation of TME. In addition to irradiating primary tumors, a robust adaptive anti-tumor immunity is potentiated, leading to successful induction of systemic tumor suppression. The sono-nanovaccines with good biocompatibility posed wide applicability to a broad spectrum of tumors, revealing immeasurable potential for translational research in oncology.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , Nanovaccines , Ultrasonography , Adaptive Immunity , Adjuvants, Immunologic , Neoplasms/diagnostic imaging , Neoplasms/therapy
13.
Cell Death Dis ; 15(1): 12, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182561

ABSTRACT

Lung squamous cell carcinoma (LUSC) is a subtype of lung cancer for which precision therapy is lacking. Chimeric antigen receptor T-cells (CAR-T) have the potential to eliminate cancer cells by targeting specific antigens. However, the tumor microenvironment (TME), characterized by abnormal metabolism could inhibit CAR-T function. Therefore, the aim of this study was to improve CAR-T efficacy in solid TME by investigating the effects of amino acid metabolism. We found that B7H3 was highly expressed in LUSC and developed DAP12-CAR-T targeting B7H3 based on our previous findings. When co-cultured with B7H3-overexpressing LUSC cells, B7H3-DAP12-CAR-T showed significant cell killing effects and released cytokines including IFN-γ and IL-2. However, LUSC cells consumed methionine (Met) in a competitive manner to induce a Met deficiency. CAR-T showed suppressed cell killing capacity, reduced cytokine release and less central memory T phenotype in medium with lower Met, while the exhaustion markers were up-regulated. Furthermore, the gene NKG7, responsible for T cell cytotoxicity, was downregulated in CAR-T cells at low Met concentration due to a decrease in m5C modification. NKG7 overexpression could partially restore the cytotoxicity of CAR-T in low Met. In addition, the anti-tumor efficacy of CAR-T was significantly enhanced when co-cultured with SLC7A5 knockdown LUSC cells at low Met concentration. In conclusion, B7H3 is a prospective target for LUSC, and B7H3-DAP12-CAR-T cells are promising for LUSC treatment. Maintaining Met levels in CAR-T may help overcome TME suppression and improve its clinical application potential.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Receptors, Chimeric Antigen , Humans , Cytokines , Lung , Methionine/pharmacology , Racemethionine , Tumor Microenvironment
14.
Mol Cell ; 84(3): 570-583.e7, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38215752

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.


Subject(s)
Antigens, CD , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Cell Adhesion , Cryoelectron Microscopy , Platelet Glycoprotein GPIb-IX Complex , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Antigens, CD/chemistry , Antigens, CD/metabolism
15.
World Neurosurg ; 183: e838-e845, 2024 03.
Article in English | MEDLINE | ID: mdl-38218437

ABSTRACT

OBJECTIVES: Brucellar cervical epidural abscess (CEA) is a rare condition with potentially permanent neurological damage if left untreated. This study aims to define the clinical presentation of brucellar CEA and evaluate the outcome of surgical treatment, specifically decompression and fusion surgery. The findings will contribute to understanding whether all patients with brucellar CEA could benefit from this surgical intervention. METHODS: A retrospective study on brucellar spondylitis was conducted at the First Hospital of Jilin University from August 2018 to August 2022. During this period, a total of 37 patients were diagnosed with brucellar spondylitis at the hospital. Out of the 37 cases, six patients (16.2%) were confirmed to have CEA through cervical magnetic resonance imaging examination and serology test results.. RESULTS: Six patients were diagnosed with brucellar CEA (16.2%), of whom 5 successfully underwent anterior cervical decompression and fusion surgery. One patient had a large prevertebral abscess that could only be drained. In combination with effective antibiotic therapy, the clinical performance of the 5 patients who underwent surgery improved after the surgery. The remaining one patient required delayed surgery due to instability of the cervical spine. The follow-up period of all the 6 patients was 6 months. CONCLUSIONS: Brucellosis should be considered as a potential cause of CEA, especially in endemic areas. Timely detection and effective management of this condition are crucial in order to minimize the associated morbidity and mortality. For patients with detectable brucellar CEA, we recommend decompression and fusion surgery.


Subject(s)
Brucella , Brucellosis , Epidural Abscess , Spondylitis , Humans , Epidural Abscess/diagnostic imaging , Epidural Abscess/surgery , Epidural Abscess/drug therapy , Retrospective Studies , Brucellosis/complications , Spondylitis/complications , Magnetic Resonance Imaging
16.
Asian J Surg ; 47(1): 407-412, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37741754

ABSTRACT

BACKGROUND: This study aimed to investigate the clinical characteristics, treatment options, and prognosis of patients with gastric schwannoma (GS). METHODS: Patients who were pathologically diagnosed with GS between April 2011 and October 2022 were enrolled. The data of clinical characteristics, pathological features, treatment options, and clinical outcomes were collected and compared between GS patients who underwent endoscopic resection (ER) and surgical resection (SR). RESULTS: Of the 32 cases, 23 underwent SR and nine underwent ER. The median tumor size was significantly smaller in ER group than in SR group (12.0 vs. 40.0 mm, P < 0.001), while patients in SR group were older than those in ER group (54.5 ± 10.6 vs. 45.3 ± 10.9 years, P = 0.036). Moreover, tumors in ER group were more likely to exhibit an intraluminal pattern (100% vs. 26.1%, P < 0.001). Patients in ER group had significantly lower hospitalization cost (25859.2 ± 8623.9 vs. 44953.0 ± 13083.8 RMB, P = 0.011) than those in SR group. No differences were found between the two groups in terms of R0 resection rate, operative time, estimated blood loss, adverse events, and recurrence rate. All patients were followed up for 4-96 months (mean: 35 months; median: 23 months), during which no evidence of recurrence or metastasis was observed. CONCLUSIONS: Both ER and SR are safe and effective treatment modalities for the management of GS, with ER being associated with lower medical costs compared to SR. The majority of GS are benign and do not recur, with little possibility of malignant transformation.


Subject(s)
Neurilemmoma , Stomach Neoplasms , Humans , Retrospective Studies , Stomach Neoplasms/diagnosis , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Endoscopy , Treatment Outcome , Neurilemmoma/diagnosis , Neurilemmoma/surgery
17.
Poult Sci ; 103(2): 103235, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035471

ABSTRACT

To evaluate the effect and its mechanism of heat-resistant antimicrobial peptide LLv on broilers, three hundred 1-day-old healthy AA+ female broilers were allocated into 5 groups with 6 replicates in each group and 10 birds in each replicate. Birds were given a basal diet, an antibiotic diet (10.2 mg/kg chlortetracycline hydrochloride), and the basal diet supplemented with 10, 50, and 100 mg/kg LLv for 42 d, respectively. Compared with the group which birds were fed an antibiotic-free basal diet (control group), supplementing 100 mg/kg LLv increased 21-day IgA, IgM, IL-4, AIV-Ab, IFN-γ levels and 42-day IgA, IgM, IL-4, AIV-Ab levels and reduced 42-day IL-1 levels in serum (P < 0.05). Compared with antibiotic group, the 10 and 50 mg/kg LLv decreased 42-day IgM levels in serum (P < 0.05). The 100 mg/kg LLv increased 21-day AIV-Ab levels and 42-day IL-4, AIV-Ab levels and reduced 42-day IL-1 levels in serum (P < 0.05). Compared with control group, the 100 mg/kg LLv increased the expression rate of sIgA secretory cells and sIgA content in jejunal mucosa at 21 d and 42 d (P < 0.05), which did not differ from antibiotic group (P > 0.05). Compared with antibiotic group, the 10 mg/kg LLv reduced 21-day sIgA content and the 50 mg/kg LLv reduced 42-d the expression rate of sIgA secretory cells in jejunal mucosa (P < 0.05). Compared with control group, the 100 mg/kg LLv increased the expression of TCR, IL-15, CD28, BAFF, CD86, CD83, MHC-II, and CD40 genes in jejunal mucosa at 21 d and 42 d (P < 0.05). Compared with antibiotic group, the 100 mg/kg LLv increased the expression of 21-day BAFF, CD40, MHC-II, CD83 genes and the expression of 42-day BAFF, TCR, IL-15, CD40, CD83 genes in jejunal mucosa (P < 0.05). The results showed that the addition of LLv to the ration had a promotional effect on the immune function of broiler chickens.


Subject(s)
Chickens , Interleukin-15 , Animals , Female , Interleukin-4/genetics , Dietary Supplements , Diet/veterinary , Anti-Bacterial Agents/pharmacology , Immunoglobulin M , Immunoglobulin A, Secretory , Interleukin-1 , Immunoglobulin A , Receptors, Antigen, T-Cell , Animal Feed/analysis
18.
Acta Pharmaceutica Sinica ; (12): 581-590, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016621

ABSTRACT

In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development.

19.
Opt Express ; 31(25): 41339-41350, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087535

ABSTRACT

Multilayer metagratings have strong wavefront manipulation capabilities and find important applications in beam splitters. Traditional methods rely on the phase gradient design of generalized Snell's law, which can achieve highly efficient beam splitters with uniform energy distribution. However, designing arbitrary energy distributions in different channels under two orthogonal polarizations remains a challenge because it requires more complex structures to modulate the energy flow. In this work, we employed a hybrid evolutionary particle swarm optimization (HEPSO) from the combination of particle swarm optimization (PSO) and genetic algorithm (GA) which has a strong ability to find the optimal structures that satisfy the specific energy flow distributions. We used the crossover and mutation operators of GA to improve the global search capabilities, and the velocity updating formula of PSO to replace the selection operator of GA to avoid local optimization. Using this approach, we successfully designed a uniform beam splitter with an efficiency of over 90% and two beam splitters with arbitrary energy distributions, achieving an average error of about 0.5%. The optimal and average efficiencies obtained from running 10 optimizations are 2.2% and 4% higher than those obtained using PSO alone with 30 populations and 75 iterations. We envision that the proposed method can also provide an idea for other photonics design problems.

20.
Autoimmun Rev ; 23(2): 103485, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38040101

ABSTRACT

Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...