Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(37): 31208-31224, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-29999302

ABSTRACT

A new class of hybrids with the unique electrocatalytic nanoarchitecture of Fe1- xS anchored on Fe3C-encapsulated and N-doped carbon nanotubes (Fe1- xS/Fe3C-NCNTs) is innovatively synthesized through a facile one-step carbonization-sulfurization strategy. The efficient synthetic protocols on phase structure evolution and dynamic decomposition behavior enable the production of the Fe1- xS/Fe3C-NCNT hybrid with advanced structural and electronic properties, in which the Fe vacancy-contained Fe1- xS showed the 3d metallic state electrons and an electroactive Fe in +2/+3 valence, and the electronic structure of the CNT was effectively modulated by the incorporated Fe3C and N, with the work function decreased from 4.85 to 4.63 eV. The meticulous structural, electronic, and compositional control unveils the unusual synergetic catalytic properties for the Fe1- xS/Fe3C-NCNT hybrid when developed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), in which the Fe3C- and N-incorporated CNTs with reduced work function and increased charge density provide a highway for electron transport and facilitate the electron migration from Fe3C-NCNTs to ultrahigh active Fe1- xS with the electron-donating effect, and the Fe vacancy-enriched Fe1- xS nanoparticles exhibit ultrahigh I3- adsorption and charge-transfer ability. As a consequence, the DSSC based on the Fe1- xS/Fe3C-NCNT CE delivers a high power conversion efficiency of 8.67% and good long-term stability with a remnant efficiency of 8.00% after 168 h of illumination, superior to those of traditional Pt. Furthermore, the possible catalytic mechanism toward I3- reduction is creatively proposed based on the structure-activity correlation. In this work, the structure engineering, electronic modulation, and composition control opens up new possibilities in constructing the novel electrocatalytic nanoarchitecture for highly efficient CEs in DSSCs.

2.
ACS Appl Mater Interfaces ; 9(21): 17949-17960, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28492078

ABSTRACT

Hydrothermal treatment of nickel acetate and phosphoric acid aqueous solution followed with a carbothermal reduction assisted phosphorization process using sucrose as the carbon source for the controlled synthesis of NixPy/C was successfully realized for the first time. The critical synthesis factors, including reduction temperature, phosphorus/nickel ratio, pH, and sucrose amount were systematically investigated. Remarkably, the carbon serves as a reducer and plays a determinative role in the transformation of Ni2P2O7 into Ni2P/C. The synthesis strategy is divided into four distinguishable stages: (1) hydrothermal preparation of Ni3(PO4)2·8H2O precursor for stabilizing P sources; (2) dimerization of Ni3(PO4)2·8H2O into more thermal stable Ni2P2O7 amorphous phase along with the generation of NiO; (3) carbothermal reduction and phosphidation of NiO into NixPy (0 ≤ y/x ≤ 0.5); and (4) further phosphidation of mixed-phase NixPy and carbothermal reduction of Ni2P2O7 into single-phase Ni2P. The resultant Ni2P, the highly active phase in electrocatalysis, was applied as counter electrode in a dye-sensitized solar cell (DSSC). The DSSC based on Ni2P with 10.4 wt.% carbon delivers a power conversion efficiency of 9.57%, superior to that of state-of-the-art Pt-based cell (8.12%). The abundant Niδ+ and Pδ- active sites and the metal-like conductivity account for its outstanding catalytic performance.

3.
ACS Appl Mater Interfaces ; 8(39): 26030-26040, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27617975

ABSTRACT

Developing low-cost, durable, and highly catalytic counter electrode (CE) materials based on earth-abundant elements is essential for dye-sensitized solar cells (DSSCs). In this study, we report a highly active nanostructured compositional material, TiOPC, which contains titanium, oxygen, phosphorus, and carbon, for efficient CE in I3-/I- electrolyte. The TiOPC nanocomposites are prepared from carbon thermal transformation of TiP2O7 in an atmosphere of nitrogen at high temperature, and their catalytic performance is regulated by changing the carbon content in the nanocomposites. The TiOPC with appropriate 24.6 wt % carbon and porous structure exhibits an enhanced electrocatalytic activity in the reduction of I3-, providing a short-circuit current density of 16.64 mA cm-2, an open-circuit potential of 0.78 V, and an energy conversion efficiency of 8.65%. The photovoltaic performance of TiOPC CE-based DSSC is even superior to that of a Pt CE-based cell (13.80 mA cm-2, 0.79 V, and 6.66%). The enhanced catalytic activity of TiOPC is attributed to the presence of predominant Ti-O-P-C structure along with the continuous conductive carbon network and the porous structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...