Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2311472, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421081

ABSTRACT

Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.

2.
Pharmaceutics ; 16(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399232

ABSTRACT

Hyperuricemia has become a global burden with the increasing prevalence and risk of associated metabolic disorders and cardiovascular diseases. Uricosurics act as a vital urate-lowering therapy by promoting uric acid excretion via the kidneys. However, potent and safe uricosurics are still in urgent demand for use in the clinic. In this study, we aimed to establish in vitro and in vivo models to aid the discovery of novel uricosurics, and to search for potent active compounds, especially targeting urate transporter 1 (URAT1), the major urate transporter in the kidney handling uric acid homeostasis. As a result, for preliminary screening, the in vitro URAT1 transport activity was assessed using a non-isotopic uric acid uptake assay in hURAT1-stably expressed HEK293 cells. The in vivo therapeutic effect was evaluated in a subacute hyperuricemic mouse model (sub-HUA) and further confirmed in a chronic hyperuricemic mouse model (Ch-HUA). By utilizing these models, compound CC18002 was obtained as a potent URAT1 inhibitor, with an IC50 value of 1.69 µM, and favorable uric acid-lowering effect in both sub-HUA and Ch-HUA mice, which was comparable to that of benzbromarone at the same dosage. Moreover, the activity of xanthine oxidoreductase, the key enzyme catalyzing uric acid synthesis, was not altered by CC18002 treatment. Taken together, we have developed a novel screening system, including a cell model targeting URAT1 and two kinds of mouse models, for the discovery of novel uricosurics. Utilizing this system, compound CC18002 was investigated as a candidate URAT1 inhibitor to treat hyperuricemia.

3.
J Med Microbiol ; 72(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36753438

ABSTRACT

Introduction. The resistance rate of Klebsiella pneumoniae (K. pneumoniae) to imipenem is increasing year by year, and the imipenem resistance mechanism of K. pneumoniae is complex. Therefore, it is urgent to develop new strategies to explore the resistance mechanism of imipenem for its effective and accurate use in clinical practice.Hypothesis/Gap sStatement. Machine learning could identify resistance features and biological process that influence microbial resistance from whole-genome sequencing (WGS) data.Aims. This work aimed to predict imipenem resistance genetic features in K. pneumoniae from whole-genome k-mer features, and analyse their function for understanding its resistance mechanism.Methods. This study analysed WGS data of K. pneumoniae combined with resistance phenotype for imipenem, and established K. pneumoniae to imipenem genotype-phenotype model to predict resistance features using chi-squared test and random forest. An external clinical dataset was used to verify prediction power of resistance features. The potential genes were identified through alignment the resistance features with the K. pneumoniae reference genome using blastn, the functions of potential genes were further analysed to explore its resistance-related signalling pathways with GO and KEGG analysis, the resistance sequence patterns were screened using streme software. Finally, the resistance features were combined and modelled through four machine-learning algorithms (logistic regression, SVM, GBDT and XGBoost) to evaluate their phenotype prediction ability.Results. A total of 16 670 imipenem resistance features were predicted from genotype-phenotype model. The 30 potential genes were identified by annotating the resistance features and corresponded to known antibiotic-related genes (mdtM, dedA, rne, etc.). GO and KEGG pathway analyses indicated the possible association of imipenem resistance with metabolism process and cell membrane. CRYCAGCDN and CGRDAAAN were found from the imipenem resistance features, which were widely presented in the reported ß-lactam resistance genes (bla SHV, bla CTX-M, bla TEM, etc.), and YCYAGCMCAST with metabolic functions (organic substance metabolic process, nitrogen compound metabolic process and cellular metabolic process) was identified from the top 50 resistance features. The 25 resistance genes in the training dataset included 19 genes in the external dataset, which verified the accuracy of prediction. The area under curve values of logistics regression, SVM, GBDT and XGBoost were 0.965, 0.966, 0.969 and 0.969, respectively, indicating that the imipenem resistance features have a strong prediction power.Conclusion. Machine-learning methods could effectively predict the imipenem resistance feature in K. pneumoniae, and provide resistance sequence profiles for predicting resistance phenotype and exploring potential resistance mechanisms. It provides an important insight into the potential therapeutic strategies of K. pneumoniae resistance to imipenem, and speed up the application of machine learning in routine diagnosis.


Subject(s)
Imipenem , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Imipenem/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Polymerase Chain Reaction/methods , Drug Resistance, Bacterial/genetics
4.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36470841

ABSTRACT

Modules consisting of antibiotic resistance genes (ARGs) flanked by inverted repeat Xer-specific recombination sites were thought to be mobile genetic elements that promote horizontal transmission. Less frequently, the presence of mobile modules in plasmids, which facilitate a pdif-mediated ARGs transfer, has been reported. Here, numerous ARGs and toxin-antitoxin genes have been found in pdif site pairs. However, the mechanisms underlying this apparent genetic mobility is currently not understood, and the studies relating to pdif-mediated ARGs transfer onto most bacterial genera are lacking. We developed the web server pdifFinder based on an algorithm called PdifSM that allows the prediction of diverse pdif-ARGs modules in bacterial genomes. Using test set consisting of almost 32 thousand plasmids from 717 species, PdifSM identified 481 plasmids from various bacteria containing pdif sites with ARGs. We found 28-bp-long elements from different genera with clear base preferences. The data we obtained indicate that XerCD-dif site-specific recombination mechanism may have evolutionary adapted to facilitate the pdif-mediated ARGs transfer. Through multiple sequence alignment and evolutionary analyses of duplicated pdif-ARGs modules, we discovered that pdif sites allow an interspecies transfer of ARGs but also across different genera. Mutations in pdif sites generate diverse arrays of modules which mediate multidrug-resistance, as these contain variable numbers of diverse ARGs, insertion sequences and other functional genes. The identification of pdif-ARGs modules and studies focused on the mechanism of ARGs co-transfer will help us to understand and possibly allow controlling the spread of MDR bacteria in clinical settings. The pdifFinder code, standalone software package and description with tutorials are available at https://github.com/mjshao06/pdifFinder.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Plasmids/genetics , Genome, Bacterial , Genes, Bacterial
5.
J Med Microbiol ; 70(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34812714

ABSTRACT

Introduction. Klebsiella pneumoniae, a gram-negative bacterium, is a common pathogen causing nosocomial infection. The drug-resistance rate of K. pneumoniae is increasing year by year, posing a severe threat to public health worldwide. K. pneumoniae has been listed as one of the pathogens causing the global crisis of antimicrobial resistance in nosocomial infections. We need to explore the drug resistance of K. pneumoniae for clinical diagnosis. Single nucleotide polymorphisms (SNPs) are of high density and have rich genetic information in whole-genome sequencing (WGS), which can affect the structure or expression of proteins. SNPs can be used to explore mutation sites associated with bacterial resistance.Hypothesis/Gap Statement. Machine learning methods can detect genetic features associated with the drug resistance of K. pneumoniae from whole-genome SNP data.Aims. This work used Fast Feature Selection (FFS) and Codon Mutation Detection (CMD) machine learning methods to detect genetic features related to drug resistance of K. pneumoniae from whole-genome SNP data.Methods. WGS data on resistance of K. pneumoniae strains to four antibiotics (tetracycline, gentamicin, imipenem, amikacin) were downloaded from the European Nucleotide Archive (ENA). Sequence alignments were performed with MUMmer 3 to complete SNP calling using K. pneumoniae HS11286 chromosome as the reference genome. The FFS algorithm was applied to feature selection of the SNP dataset. The training set was constructed based on mutation sites with mutation frequency >0.995. Based on the original SNP training set, 70% of SNPs were randomly selected from each dataset as the test set to verify the accuracy of the training results. Finally, the resistance genes were obtained by the CMD algorithm and Venny.Results. The number of strains resistant to tetracycline, gentamicin, imipenem and amikacin was 931, 1048, 789 and 203, respectively. Machine learning algorithms were applied to the SNP training set and test set, and 28 and 23 resistance genes were predicted, respectively. The 28 resistance genes in the training set included 22 genes in the test set, which verified the accuracy of gene prediction. Among them, some genes (KPHS_35310, KPHS_18220, KPHS_35880, etc.) corresponded to known resistance genes (Eef2, lpxK, MdtC, etc). Logistic regression classifiers were established based on the identified SNPs in the training set. The area under the curves (AUCs) of the four antibiotics was 0.939, 0.950, 0.912 and 0.935, showing a strong ability to predict bacterial resistance.Conclusion. Machine learning methods can effectively be used to predict resistance genes and associated SNPs. The FFS and CMD algorithms have wide applicability. They can be used for the drug-resistance analysis of any microorganism with genomic variation and phenotypic data. This work lays a foundation for resistance research in clinical applications.


Subject(s)
Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Machine Learning , Amikacin , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Gentamicins , Humans , Imipenem , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide , Tetracyclines
SELECTION OF CITATIONS
SEARCH DETAIL
...