Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 704
Filter
1.
Aging Cell ; : e14229, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831635

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.

2.
Chemosphere ; 361: 142497, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825248

ABSTRACT

Ammonia (NH3) plays an important role in the formation of atmospheric particulate matter, but the contribution of traffic-related emissions remains unclear, particularly in megacities with a large number of vehicles. Taking the opportunity of the stringent COVID-19 lockdowns implemented in Beijing and Shanghai in 2022, this study aims to estimate the traffic-related NH3 emissions in these two megacities based on satellite observations. Differences between urban and suburban areas during the lockdown and non-lockdown periods are compared. It was found that despite different dominating sources, the overall NH3 concentrations in urban and suburban areas were at a similar level, and the lockdown resulted in a more prominent decrease in urban areas, where traffic activities were most heavily affected. The traffic-related contribution to the total emission was estimated to be ∼30% in megacities, and ∼40% in urban areas, which are about 2-10 times higher than that in previous studies. The findings indicate that the traffic-related NH3 emissions have been significantly underestimated in previous studies and may play a more critical role in the formation of air pollution in megacities, especially in winter, when agricultural emissions are relatively low. This study highlights the importance of traffic-related NH3 emissions in Chinese megacities and the need to reassess the emissions and their impacts on air quality.

3.
PLoS One ; 19(6): e0304506, 2024.
Article in English | MEDLINE | ID: mdl-38829913

ABSTRACT

BACKGROUND: The use of three-dimensional(3D) printing is broadly across many medical specialties. It is an innovative, and rapidly growing technology to produce custom anatomical models and medical conditions models for medical teaching, surgical planning, and patient education. This study aimed to evaluate the accuracy and feasibility of 3D printing in creating a superficial femoral artery pseudoaneurysm model based on CT scans for endovascular training. METHODS: A case of a left superficial femoral artery pseudoaneurysm was selected, and the 3D model was created using DICOM files imported into Materialise Mimics 22.0 and Materialise 3-Matic software, then printed using vat polymerization technology. Two 3D-printed models were created, and a series of comparisons were conducted between the 3D segmented images from CT scans and these two 3D-printed models. Ten comparisons involving internal diameters and angles of the specific anatomical location were measured. RESULTS: The study found that the absolute mean difference in diameter between the 3D segmented images and the 3D printed models was 0.179±0.145 mm and 0.216±0.143mm, respectively, with no significant difference between the two sets of models. Additionally, the absolute mean difference in angle was 0.99±0.65° and 1.00±0.91°, respectively, and the absolute mean difference in angle between the two sets of data was not significant. Bland-Altman analysis confirmed a high correlation in dimension measurements between the 3D-printed models and segmented images. Furthermore, the accuracy of a 3D-printed femoral pseudoaneurysm model was further tested through the simulation of a superficial femoral artery pseudoaneurysm coiling procedure using the Philips Azurion7 in the angiography room. CONCLUSIONS: 3D printing is a reliable technique for producing a high accuracy 3D anatomical model that closely resemble a patient's anatomy based on CT images. Additionally, 3D printing is a feasible and viable option for use in endovascular training and medical education. In general, 3D printing is an encouraging technology with diverse possibilities in medicine, including surgical planning, medical education, and medical device advancement.


Subject(s)
Aneurysm, False , Endovascular Procedures , Feasibility Studies , Femoral Artery , Models, Anatomic , Printing, Three-Dimensional , Tomography, X-Ray Computed , Aneurysm, False/diagnostic imaging , Humans , Femoral Artery/diagnostic imaging , Femoral Artery/anatomy & histology , Endovascular Procedures/methods , Imaging, Three-Dimensional
4.
Sci Total Environ ; 940: 173497, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38825207

ABSTRACT

The synergistic responses of O3 and PM2.5 to their common precursors remain unclear within industrial cities with complex emissions. In this study, hundreds of scenarios of jointly reduced local NOx and VOCs emissions were designed along with the source apportionment techniques embedded in the Comprehensive Air quality Model with extensions (CAMx) system to explore the locally formed O3 and PM2.5 sensitivities to the reduced emissions of NOx and VOCs. The results indicate that locally formed O3 and PM2.5 are more connected to local emissions, resulting in unique formation sensitivities. Local O3 formation is usually in a transitional regime and transferred to VOC-limited condition under O3-polluted conditions due to high VOC emissions. Locally formed O3 and PM2.5 vary largely in different functional regions due to different emission feature and meteorological condition. When reducing VOCs emissions alone, an increase in PM2.5 formation could be observed due to the increase in the formation of nitrate resulting from reduced competition of NOx in O3 formation. To reduce PM2.5 and O3 concentrations simultaneously, specific ratios of NOx reduction percentage to VOC reduction percentage should be considered to different functional regions under different pollution levels. This research highlights the importance to conduct targeted sensitivity tests for emission reduction in different functional zones with complex emission features for the coordinated control of O3 and PM2.5 pollution in typical industrialized cities.

5.
Environ Sci Technol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867458

ABSTRACT

Microplastic records from lake cores can reconstruct the plastic pollution history. However, the associations between anthropogenic activities and microplastic accumulation are not well understood. Huguangyan Maar Lake (HML) is a deep-enclosed lake without inlets and outlets, where the sedimentary environment is ideal for preserving a stable and historical microplastic record. Microplastic (size: 10-500 µm) characteristics in the HML core were identified using the Laser Direct Infrared Imaging system. The earliest detectable microplastics appeared unit in 1955 (1.1 items g-1). The microplastic abundance ranged from n.d. to 615.2 items g-1 in 1955-2019 with an average of 134.9 items g-1. The abundance declined slightly during the 1970s and then increased rapidly after China's Reform and Opening Up in 1978. Sixteen polymer types were detectable, with polyethylene and polypropylene dominating, accounting for 23.5 and 23.3% of the total abundance, and the size at 10-100 µm accounted for 80%. Socioeconomic factors dominated the microplastic accumulation based on the random forest modeling, and the contributions of GDP per capita, plastic-related industry yield, and total crop yield were, respectively, 13.9, 35.1, and 9.3% between 1955-2019. The total crop yield contribution further increased by 1.7% after 1978. Coarse sediment particles increased with soil erosion exacerbated microplastics discharging into the sediment.

6.
J Ovarian Res ; 17(1): 105, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760835

ABSTRACT

BACKGROUND: In the realm of assisted reproduction, a subset of infertile patients demonstrates high ovarian response following controlled ovarian stimulation (COS), with approximately 29.7% facing the risk of Ovarian Hyperstimulation Syndrome (OHSS). Management of OHSS risk often necessitates embryo transfer cancellation, leading to delayed prospects of successful pregnancy and significant psychological distress. Regrettably, these patients have received limited research attention, particularly regarding their metabolic profile. In this study, we aim to utilize gas chromatography-mass spectrometry (GC-MS) to reveal these patients' unique serum metabolic profiles and provide insights into the disease's pathogenesis. METHODS: We categorized 145 infertile women into two main groups: the CON infertility group from tubal infertility patients and the Polycystic Ovary Syndrome (PCOS) infertility group. Within these groups, we further subdivided them into four categories: patients with normal ovarian response (CON-NOR group), patients with high ovarian response and at risk for OHSS (CON-HOR group) within the CON group, as well as patients with normal ovarian response (PCOS-NOR group) and patients with high ovarian response and at risk for OHSS (PCOS-HOR group) within the PCOS group. Serum metabolic profiles were analyzed using GC-MS. The risk criteria for OHSS were: the number of developing follicles > 20, peak Estradiol (E2) > 4000pg/mL, and Anti-Müllerian Hormone (AMH) levels > 4.5ng/mL. RESULTS: The serum metabolomics analysis revealed four different metabolites within the CON group and 14 within the PCOS group. Remarkably, 10-pentadecenoic acid emerged as a discernible risk metabolite for the CON-HOR, also found to be a differential metabolite between CON-NOR and PCOS groups. cysteine and 5-methoxytryptamine were also identified as risk metabolites for the PCOS-HOR. Furthermore, KEGG analysis unveiled significant enrichment of the aminoacyl-tRNA biosynthesis pathway among the metabolites differing between PCOS-NOR and PCOS-HOR. CONCLUSION: Our study highlights significant metabolite differences between patients with normal ovarian response and those with high ovarian response and at risk for OHSS within both the tubal infertility control group and PCOS infertility group. Importantly, we observe metabolic similarities between patients with PCOS and those with a high ovarian response but without PCOS, suggesting potential parallels in their underlying causes.


Subject(s)
Fertilization in Vitro , Infertility, Female , Ovulation Induction , Humans , Female , Infertility, Female/metabolism , Infertility, Female/blood , Adult , Ovarian Hyperstimulation Syndrome/blood , Ovarian Hyperstimulation Syndrome/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/complications , Gas Chromatography-Mass Spectrometry , Metabolome , Metabolomics/methods , Pregnancy , Ovary/metabolism
7.
Chem Sci ; 15(18): 6891-6896, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725498

ABSTRACT

Birefringent materials are of great significance to the development of modern optical technology; however, research on halide birefringent crystals with a wide transparent range remains limited. In this work, mercuric bromide (HgBr2) has been investigated for the first time as a promising birefringent material with a wide transparent window spanning from ultraviolet (UV) to far-infrared (far-IR) spectral regions (0.34-22.9 µm). HgBr2 has an exceptionally large birefringence (Δn, 0.235 @ 546 nm), which is 19.6 times that of commercial MgF2. The ordered linear motif [Br-Hg-Br] with high polarizability anisotropy within the molecule is the inherent source of excellent birefringence, making it an efficient building block for birefringent materials. In addition, HgBr2 can be easily grown under mild conditions and remain stable in air for prolonged periods. Studying the birefringent properties of HgBr2 crystals would provide new ideas for future exploration of wide-spectrum birefringent materials.

8.
Ann Intensive Care ; 14(1): 72, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735020

ABSTRACT

BACKGROUND: COVID-19-associated pulmonary fibrosis remains frequent. This study aimed to investigate pulmonary redox balance in COVID-19 ARDS patients and possible relationship with pulmonary fibrosis and long-term lung abnormalities. METHODS: Baseline data, chest CT fibrosis scores, N-terminal peptide of alveolar collagen III (NT-PCP-III), transforming growth factor (TGF)-ß1, superoxide dismutase (SOD), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in bronchoalveolar lavage fluid (BALF) were first collected and compared between SARS-CoV-2 RNA positive patients with moderate to severe ARDS (n = 65, COVID-19 ARDS) and SARS-CoV-2 RNA negative non-ARDS patients requiring mechanical ventilation (n = 63, non-ARDS). Then, correlations between fibroproliferative (NT-PCP-III and TGF-ß1) and redox markers were analyzed within COVID-19 ARDS group, and comparisons between survivor and non-survivor subgroups were performed. Finally, follow-up of COVID-19 ARDS survivors was performed to analyze the relationship between pulmonary abnormalities, fibroproliferative and redox markers 3 months after discharge. RESULTS: Compared with non-ARDS group, COVID-19 ARDS group had significantly elevated chest CT fibrosis scores (p < 0.001) and NT-PCP-III (p < 0.001), TGF-ß1 (p < 0.001), GSSG (p < 0.001), and MDA (p < 0.001) concentrations on admission, while decreased SOD (p < 0.001) and GSH (p < 0.001) levels were observed in BALF. Both NT-PCP-III and TGF-ß1 in BALF from COVID-19 ARDS group were directly correlated with GSSG (p < 0.001) and MDA (p < 0.001) and were inversely correlated with SOD (p < 0.001) and GSH (p < 0.001). Within COVID-19 ARDS group, non-survivors (n = 28) showed significant pulmonary fibroproliferation (p < 0.001) with more severe redox imbalance (p < 0.001) than survivors (n = 37). Furthermore, according to data from COVID-19 ARDS survivor follow-up (n = 37), radiographic residual pulmonary fibrosis and lung function impairment improved 3 months after discharge compared with discharge (p < 0.001) and were associated with early pulmonary fibroproliferation and redox imbalance (p < 0.01). CONCLUSIONS: Pulmonary redox imbalance occurring early in COVID-19 ARDS patients drives fibroproliferative response and increases the risk of death. Long-term lung abnormalities post-COVID-19 are associated with early pulmonary fibroproliferation and redox imbalance.

9.
J Nanobiotechnology ; 22(1): 243, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735927

ABSTRACT

Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.


Subject(s)
Aptamers, Nucleotide , Carcinoma, Hepatocellular , Liver Neoplasms , Nanostructures , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Humans , Aptamers, Nucleotide/chemistry , Nanostructures/chemistry , Nanostructures/therapeutic use , Animals , Drug Delivery Systems/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
10.
Theranostics ; 14(7): 2687-2705, 2024.
Article in English | MEDLINE | ID: mdl-38773980

ABSTRACT

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Subject(s)
Alveolar Epithelial Cells , Bleomycin , Disease Models, Animal , Iron , Mitochondria , Pulmonary Fibrosis , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Mice , Iron/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Mice, Inbred C57BL , Cell Line , Male
11.
Sci Total Environ ; 932: 173011, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719052

ABSTRACT

Ozone pollution presents a growing air quality threat in urban agglomerations in China. It remains challenge to distinguish the roles of emissions of precursors, chemical production and transportations in shaping the ground-level ozone trends, largely due to complicated interactions among these 3 major processes. This study elucidates the formation factors of ozone pollution and categorizes them into local emissions (anthropogenic and biogenic emissions), transport (precursor transport and direct transport from various regions), and meteorology. Particularly, we attribute meteorology, which affects biogenic emissions and chemical formation as well as transportation, to a perturbation term with fluctuating ranges. The Community Multiscale Air Quality (CMAQ) model was utilized to implement this framework, using the Pearl River Delta region as a case study, to simulate a severe ozone pollution episode in autumn 2019 that affected the entire country. Our findings demonstrate that the average impact of meteorological conditions changed consistently with the variation of ozone pollution levels, indicating that meteorological conditions can exert significant control over the degree of ozone pollution. As the maximum daily 8-hour average (MDA8) ozone concentrations increased from 20 % below to 30 % above the National Ambient Air Quality Standard II, contributions from emissions and precursor transport were enhanced. Concurrently, direct transport within Guangdong province rose from 13.8 % to 22.7 %, underscoring the importance of regional joint prevention and control measures under adverse weather conditions. Regarding biogenic emissions and precursor transport that cannot be directly controlled, we found that their contributions were generally greater in urban areas with high nitrogen oxides (NOx) levels, primarily due to the stronger atmospheric oxidation capacity facilitating ozone formation. Our results indicate that not only local anthropogenic emissions can be controlled in urban areas, but also the impacts of local biogenic emissions and precursor transport can be potentially regulated through reducing atmospheric oxidation capacity.

12.
Am J Pathol ; 194(7): 1248-1261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599461

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are essential in defending against infection. Sepsis is a systemic inflammatory response to infection and a leading cause of death. The relationship between the overall competency of the host immune response and disease severity is not fully elucidated. This study identified a higher proportion of circulating MAIT17 with expression of IL-17A and retinoic acid receptor-related orphan receptor γt in patients with sepsis. The proportion of MAIT17 was correlated with the severity of sepsis. Single-cell RNA-sequencing analysis revealed an enhanced expression of lactate dehydrogenase A (LDHA) in MAIT17 in patients with sepsis. Cell-culture experiments demonstrated that phosphoinositide 3-kinase-LDHA signaling was required for retinoic acid receptor-related orphan receptor γt expression in MAIT17. Finally, the elevated levels of plasma IL-18 promoted the differentiation of circulating MAIT17 cells in sepsis. In summary, this study reveals a new role of circulating MAIT17 in promoting sepsis severity and suggests the phosphoinositide 3-kinase-LDHA signaling as a driving force in MAIT17 responses.


Subject(s)
Cell Differentiation , Mucosal-Associated Invariant T Cells , Sepsis , Humans , Sepsis/immunology , Sepsis/pathology , Sepsis/blood , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Male , Female , Middle Aged , Severity of Illness Index , Aged , Interleukin-17/metabolism , Interleukin-17/blood , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism
13.
Coron Artery Dis ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38578232

ABSTRACT

Emerging evidence indicates a significant role of remnant cholesterol in contributing to the residual risk associated with major adverse cardiovascular events (MACE). This study aims to evaluate the dose-response relationship between remnant cholesterol and the risk of MACE. PubMed, Embase and Cochrane databases were reviewed to identify cohort studies published in English up to 1 August 2023. Twenty-eight articles were selected. Pooled hazard ratios (HR) and their 95% confidence intervals (CIs) were calculated using fixed or random-effects models to evaluate the association between remnant cholesterol and the risk of MACE. The dose-response relationship between remnant cholesterol levels and the risk of MACE was analyzed using the linear model and restricted cubic spline regression models. For calculated remnant cholesterol levels, the pooled HR (95% CI) of MACE for per 1-SD increase was 1.13 (1.08, 1.17); HR (95% CI) for the second quartile (Q2), the third quartile (Q3) and the highest quartile (Q4) of remnant cholesterol levels were 1.14 (1.03, 1.25), 1.43 (1.23, 1.68) and 1.68 (1.44, 1.97), respectively, compared with the lowest quartile (Q1). For measured remnant cholesterol levels, the pooled HR (95% CI) of MACE per 1-SD increase was 1.67 (1.39, 2.01). The dose-response meta-analysis showed a dose-response relationship between remnant cholesterol levels and the risk of MACE, both on a linear trend (P < 0.0001) and a nonlinear trend (P < 0.0001). The risk of MACE is associated with increased levels of remnant cholesterol, and the dose-response relationship between remnant cholesterol levels and the risk of MACE showed both linear and nonlinear trends.

14.
Plants (Basel) ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38611542

ABSTRACT

This study aims to establish an Agrobacterium-mediated transformation system for use with the 'MiniMax'soybean cultivar. MiniMax is a mutant soybean whose growth cycle is around 90 days, half that of most other soybean varieties, making it an optimal model cultivar to test genes of interest before investing in modification of elite lines. We describe an efficient protocol for Agrobacterium-mediated transformation using MiniMax seeds. It uses a modified 'half seed' regeneration protocol for transgenic soybean production, utilizing the rapid generation MiniMax variety to obtain T1 seeds in approximately 145 days. Addition of phloroglucinol (PG) to the regeneration protocol was key to obtaining high-efficiency rooting of the regenerated shoots. Transfer to soil was accomplished using an organic soil amendment containing nutrients and mycorrhiza for plants to thrive in the greenhouse. This combination of genotype and stimulants provides a transformation protocol to genetically engineer MiniMax seeds with a transgenic lab-to-greenhouse production efficiency of 4.0%. This is the first report of MiniMax soybean whole plant transformation and heritable T1 transmission. This protocol provides an ideal resource for enhancing the genetic transformation of any soybean cultivar.

15.
Sci Total Environ ; 929: 172544, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643875

ABSTRACT

Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.

16.
Genomics ; 116(2): 110814, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38432499

ABSTRACT

Lactate is a glycolysis end product, and its levels are markedly associated with disease severity, morbidity, and mortality in sepsis. It modulates key functions of immune cells, including macrophages. In this investigation, transcriptomic analysis was performed using lactic acid, sodium lactate, and hydrochloric acid-stimulated mouse bone marrow-derived macrophages (iBMDM), respectively, to identify lactate-associated signaling pathways. After 24 h of stimulation, 896 differentially expressed genes (DEG) indicated were up-regulation, whereas 792 were down-regulated in the lactic acid group, in the sodium lactate group, 128 DEG were up-regulated, and 41 were down-regulated, and in the hydrochloric acid group, 499 DEG were up-regulated, and 285 were down-regulated. Subsequently, clinical samples were used to further verify the eight genes with significant differences, among which Tssk6, Ypel4, Elovl3, Trp53inp1, and Cfp were differentially expressed in patients with high lactic acid, indicating their possible involvement in lactic acid-induced inflammation and various physiological diseases caused by sepsis. However, elongation of very long chain fatty acids protein 3 (Elovl3) was negatively correlated with lactic acid content in patients. The results of this study provide a necessary reference for better understanding the transcriptomic changes caused by lactic acid and explain the potential role of high lactic acid in the regulation of macrophages in sepsis.


Subject(s)
Lactic Acid , Sepsis , Animals , Mice , Humans , Lactic Acid/metabolism , Lactic Acid/pharmacology , Sodium Lactate , RNA, Messenger , Hydrochloric Acid , Sepsis/genetics , Sepsis/metabolism , Macrophages/metabolism
17.
Phytomedicine ; 128: 155535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537442

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE: To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS: Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS: The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION: Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.


Subject(s)
Flavonoids , Pulmonary Arterial Hypertension , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Pulmonary Arterial Hypertension/drug therapy , Animals , Hypertension, Pulmonary/drug therapy , Oxidative Stress/drug effects , Vascular Remodeling/drug effects , Biological Products/pharmacology , Biological Products/therapeutic use , Medicine, Chinese Traditional/methods
18.
Heliyon ; 10(4): e26082, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404812

ABSTRACT

Background: Social isolation can be particularly challenging for individuals with high autistic traits who struggle with social interactions. The COVID-19 pandemic led to increased isolation, exacerbating stress for those who may have difficulty in connecting with others. This study aimed to explore the relationship between autistic traits and stress associated with social isolation. Methods: A sample of 1597 Chinese adults completed measures of autistic traits, the stress of social isolation, psychological inflexibility and core self-evaluation, during an epidemic prevention and control period of COVID-19 in Chongqing, China. Measures included the Autism-Spectrum Quotient, Coronavirus Stress Measure, Acceptance and Action Questionnaire-II, and Core Self-Evaluation Scale. Results: Autistic traits were positively correlated with the stress of social isolation, which was mediated by the chain effect of core self-evaluation and psychological inflexibility. individuals with high autistic traits reported significantly higher stress than individuals with low autistic traits. Limitations: This was a cross-sectional study, which limits causal inference. In addition, data were self-reported, which may cause methodological effects. Finally, this study was conducted during China's quarantine policy and external validation of the findings is required. Conclusions: Autistic traits are positively associated with the stress of social isolation. Autistic traits affected core self-evaluation first, and psychological inflexibility subsequently, leading to the stress of social isolation. individuals with high autistic traits tended to experience higher levels of stress during pandemic quarantines. The findings provide useful evidence for developing interventions and implementing preventive measures to reduce stress in individuals with high autistic traits and autism spectrum disorder.

19.
ACS Mater Lett ; 6(2): 666-673, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38333599

ABSTRACT

Switching coordination networks (CNs) that reversibly transform between narrow or closed pore (cp) and large pore (lp) phases, though fewer than their rigid counterparts, offer opportunities for sorption-related applications. However, their structural transformations and switching mechanisms remain underexplored at the molecular level. In this study, we conducted a systematic investigation into a 2D switching CN, [Ni(bpy)2(NCS)2]n, sql-1-Ni-NCS (1 = bpy = 4,4'-bipyridine), using coincident gas sorption and in situ powder X-ray diffraction (PXRD) under low-temperature conditions. Gas adsorption measurements revealed that C2H4 (169 K) and C2H6 (185 K) exhibited single-step type F-IVs sorption isotherms with sorption uptakes of around 180-185 cm3 g-1, equivalent to four sorbate molecules per formula unit. Furthermore, parallel in situ PXRD experiments provided insight into sorbate-dependent phase switching during the sorption process. Specifically, CO2 sorption induced single-step phase switching (path I) solely between cp and lp phases consistent with the observed single-step type F-IVs sorption isotherm. By contrast, intermediate pore (ip) phases emerged during C2H4 and C2H6 desorption as well as C3H6 adsorption, although they remained undetectable in the sorption isotherms. To our knowledge, such a cp-lp-ip-cp transformation (path II) induced by C2H4/6 and accompanied by single-step type F-IVs sorption isotherms represents a novel type of phase transition mechanism in switching CNs. By virtue of Rietveld refinements and molecular simulations, we elucidated that the phase transformations are governed by cooperative local and global structural changes involving NCS- ligand reorientation, bpy ligand twist and rotation, cavity edge (Ni-bpy-Ni) deformation, and interlayer expansion and sliding.

20.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328109

ABSTRACT

Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population-rather than individual-based inferences due to limited within-individual sampling. Here, three densely-sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely-sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously-unrecognized inter-individual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.

SELECTION OF CITATIONS
SEARCH DETAIL
...