Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 19379-19390, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568698

ABSTRACT

Photodriven chiral catalysis is the combination of photocatalysis and chiral catalysis and is considered one of the cleanest and most efficient methods for the synthesis of chiral compounds or drugs. Furthermore, due to the potential metal contamination associated with most metal-based catalysts, metal-free chiral photocatalysts are ideal candidates. In this work, we demonstrate that metal-free chiral carbon dots (CDs) exhibit size-dependent enantioselective photocatalytic activity. Using serine as the raw material, chiral CDs with well-defined structures and average sizes of 2.22, 3.01, 3.70, 4.77, and 7.21 nm were synthesized using the electrochemical method. These chiral CDs possess size-dependent band gaps and exhibit photoresponsive enantioselective catalytic activity toward the oxidation of dihydroxyphenylalanine (DOPA). Under light-assisted conditions, chiral CDs (L72, 500 µg/mL) exhibit high selectivity (selectivity factor: 2.07) and maintain a certain level of catalytic activity (1.34 µM/min) even at a low temperature of 5 °C. The high catalytic activity of the chiral CDs arises from their photoelectrons reducing O2 to generate O2-, as the active oxygen species for DOPA oxidation. The high enantioselectivity of the chiral CDs is attributed to their differential adsorption capabilities toward DOPA enantiomers. This study provides a new approach for designing metal-free chiral photocatalysts with high enantioselectivity.

2.
ACS Nano ; 18(6): 5029-5039, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38286031

ABSTRACT

Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Šand c = 6.89 Šwith a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).

3.
Nano Lett ; 23(20): 9515-9521, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37830516

ABSTRACT

Two-dimensional (2D) van der Waals single crystals with long-range magnetic order are the precondition and urgent task for developing a 2D spintronics device. In contrast to graphene and transition metal dichalcogenides, the study of 2D single-crystal metal oxides with intrinsic ferromagnetic properties remains a huge challenge. Here, we report a large-size trigonal single-crystal rhodium oxide (SC-Tri-RhO2), with crystal parameters of a = b = 3.074 Å, c = 6.116 Å, and a space group of P3̅m1 (164), exhibiting strong ferromagnetism (FM) at a rather high temperature. Furthermore, theoretical calculations suggest that the ferromagnetism in SC-Tri-RhO2 originates from spin splitting near the Fermi level, and the total magnetic moment is contributed mainly by the Rh atom.

4.
ACS Nano ; 17(21): 21539-21552, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37843009

ABSTRACT

The occurrence and development of inflammatory bowel diseases (IBDs) are inextricably linked to the excessive production of reactive oxygen species (ROS). Thus, there is an urgent need to develop innovative tactics to combat IBDs and scavenge excess ROS from affected areas. Herein, silicon hydrogen nanoparticles (SiH NPs) with ROS-scavenging ability were prepared by etching Si nanowires (NWs) with hydrogen fluoride (HF) to alleviate the symptoms associated with IBD by orally targeting the inflamed colonic sites. The strong reductive Si-H bonds showed excellent stability in the gastric and intestinal fluids, which exhibited efficient ROS-scavenging effects to protect cells from high oxidative stress-induced death. After oral delivery, the negatively charged SiH NPs were specifically adsorbed to the positively charged inflammatory epithelial tissues of the colon for an extended period via electrostatic interactions to prolong the colonic residence time. SiH NPs exhibited significant preventive and therapeutic effects in dextran sodium sulfate-induced prophylactic and therapeutic mouse models by inhibiting colonic shortening, reducing the secretion of pro-inflammatory cytokines, regulating macrophage polarization, and protecting the colonic barrier. As determined using 16S rDNA high-throughput sequencing, the oral administration of SiH NPs treatment led to changes in the abundance of the intestinal microbiome, which improved the bacterial diversity and restored the relative abundance of beneficial bacteria after the inflamed colon. Overall, our findings highlight the broad application of SiH-based anti-inflammatory drugs in the treatment of IBD and other inflammatory diseases.


Subject(s)
Inflammatory Bowel Diseases , Nanostructures , Silicon , Animals , Mice , Anti-Inflammatory Agents/therapeutic use , Bacteria , Colon , Disease Models, Animal , Inflammatory Bowel Diseases/drug therapy , Reactive Oxygen Species , Silicon/pharmacology , Silicon/therapeutic use
5.
Nat Commun ; 14(1): 5365, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37666815

ABSTRACT

The oxygen evolution reactions in acid play an important role in multiple energy storage devices. The practical promising Ru-Ir based catalysts need both the stable high oxidation state of the Ru centers and the high stability of these Ru species. Here, we report stable and oxidative charged Ru in two-dimensional ruthenium-iridium oxide enhances the activity. The Ru0.5Ir0.5O2 catalyst shows high activity in acid with a low overpotential of 151 mV at 10 mA cm-2, a high turnover frequency of 6.84 s-1 at 1.44 V versus reversible hydrogen electrode and good stability (618.3 h operation). Ru0.5Ir0.5O2 catalysts can form more Ru active sites with high oxidation states at lower applied voltages after Ir incorporation, which is confirmed by the pulse voltage induced current method. Also, The X-ray absorption spectroscopy data shows that the Ru-O-Ir local structure in two-dimensional Ru0.5Ir0.5O2 solid solution improved the stability of these Ru centers.

6.
Nat Commun ; 14(1): 1248, 2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36871002

ABSTRACT

Metastable metal oxides with ribbon morphologies have promising applications for energy conversion catalysis, however they are largely restricted by their limited synthesis methods. In this study, a monoclinic phase iridium oxide nanoribbon with a space group of C2/m is successfully obtained, which is distinct from rutile iridium oxide with a stable tetragonal phase (P42/mnm). A molten-alkali mechanochemical method provides a unique strategy for achieving this layered nanoribbon structure via a conversion from a monoclinic phase K0.25IrO2 (I2/m (12)) precursor. The formation mechanism of IrO2 nanoribbon is clearly revealed, with its further conversion to IrO2 nanosheet with a trigonal phase. When applied as an electrocatalyst for the oxygen evolution reaction in acidic condition, the intrinsic catalytic activity of IrO2 nanoribbon is higher than that of tetragonal phase IrO2 due to the low d band centre of Ir in this special monoclinic phase structure, as confirmed by density functional theory calculations.

7.
Angew Chem Int Ed Engl ; 62(20): e202218924, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36932034

ABSTRACT

Electrochemical two-electron oxygen reduction reaction (2 e- ORR) to produce hydrogen peroxide (H2 O2 ) is a promising alternative to the energetically intensive anthraquinone process. However, there remain challenges in designing 2 e- ORR catalysts that meet the application criteria. Here, we successfully adopt a microwave-assisted mechanochemical-thermal approach to synthesize hexagonal phase SnO2 (h-SnO2 ) nanoribbons with largely exposed edge structures. In 0.1 M Na2 SO4 electrolyte, the h-SnO2 catalysts achieve the excellent H2 O2 selectivity of 99.99 %. Moreover, when employed as the catalyst in flow cell devices, they exhibit a high yield of 3885.26 mmol g-1 h-1 . The enhanced catalytic performance is attributed to the special crystal structure and morphology, resulting in abundantly exposed edge active sites to convert O2 to H2 O2 , which is confirmed by density functional theory calculations.

8.
Nat Commun ; 13(1): 5828, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192414

ABSTRACT

Designing well-ordered nanocrystal arrays with subnanometre distances can provide promising materials for future nanoscale applications. However, the fabrication of aligned arrays with controllable accuracy in the subnanometre range with conventional lithography, template or self-assembly strategies faces many challenges. Here, we report a two-dimensional layered metastable oxide, trigonal phase rhodium oxide (space group, P-3m1 (164)), which provides a platform from which to construct well-ordered face-centred cubic rhodium nanocrystal arrays in a hexagonal pattern with an intersurface distance of only 0.5 nm. The coupling of the well-ordered rhodium array and metastable substrate in this catalyst triggers and improves hydrogen spillover, enhancing the acidic hydrogen evolution for H2 production, which is essential for various clean energy-related devices. The catalyst achieves a low overpotential of only 9.8 mV at a current density of -10 mA cm-2, a low Tafel slope of 24.0 mV dec-1, and high stability under a high potential (vs. RHE) of -0.4 V (current density of ~750 mA cm-2). This work highlights the important role of metastable materials in the design of advanced materials to achieve high-performance catalysis.

9.
Nano Lett ; 22(17): 7203-7211, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000894

ABSTRACT

Carbon dots (C-Dots), with unique properties from tunable photoluminescence to biocompatibility, show wide applications in biotechnology, optoelectronic device and catalysis. Chiral C-Dots are expected to have strongly chirality-dependent biological and catalytic properties. For chiral C-Dots, a clear structure and quantitative structure-property relationship need to be clarified. Here, chiral C-Dots were fabricated by electrooxidation polymerization from serine enantiomers. The oxidized serine has a reversed chiral configuration to serine, which leads to the chiral C-Dots possessing inverse handedness compared with their raw materials. Electron circular dichroism spectrum, together with other diverse characterization techniques and theoretical calculations, confirmed that these chiral C-Dots (2-7 nm) have a well-defined primary structure of polycyclic dipeptide and possess a spatial structure with a c-axis of hexagonal symmetry and two cyclic dipeptides as the spatial structural unit. These chiral C-Dots also show enantioselective catalytic activity on DOPA enantiomers oxidation.


Subject(s)
Carbon , Serine , Carbon/chemistry , Catalysis , Circular Dichroism , Stereoisomerism
10.
J Colloid Interface Sci ; 606(Pt 2): 1274-1283, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34492465

ABSTRACT

The dynamic behavior of electron-hole pairs at the interface of the nanocomposites is important for photoelectrochemical catalysis, but it is difficult to characterize. Here we construct a ternary titanium dioxide/nitrogen-doped carbon dot/gold (TiO2/NCD/Au) complex as the model catalyst to investigate the kinetic indexes at their interfaces. Under irradiation (200 mW cm-2), the photocurrent density of TiO2/NCD/Au is 10.26 mA cm-2, which is higher than those of TiO2/Au (4.34 mA cm-2), TiO2/NCD (7.55 mA cm-2) and TiO2 (3.34 mA cm-2). The evolved oxygen of TiO2/NCD/Au reaches 125.8 µmol after 5000 s test. The energy bands of complexes are very similar to that of the unmodified TiO2 catalyst due to the low content modification of NCDs and Au. In addition, the transient photovoltage (TPV) tests with a series of control samples show differences about the carriers' separation and transfer process, which verify that Au can increase the separation quantity of electron-hole pairs while NCDs play a more important role on the increase of the separation quantity and separation rate simultaneously. This work quantifies the function of each component in a composite catalyst and deepens the understanding of the catalyst interface design.

11.
Theranostics ; 11(19): 9234-9242, 2021.
Article in English | MEDLINE | ID: mdl-34646368

ABSTRACT

Sonodynamic therapy (SDT) triggered by ultrasound (US) can overcome pivotal limitations of photo-therapy owing to its high depth-penetration and low phototoxicity. However, there is still a need to develop more efficient sonosensitizes to enhance the therapy efficiency. Methods: In this study, Pt nanoparticles (Pt NPs) are reduced on silicon nanowires (SiNWs) by in situ reduction to prepare Si-Pt nanocomposites (Si-Pt NCs). Results: Si-Pt NCs can produce reactive oxygen radicals (ROS) under ultrasound (US) irradiation, which have sonodynamic therapy (SDT) effect. Meanwhile, Si-Pt NCs can convert excess hydrogen peroxide (H2O2) into ROS in the tumor microenvironment, which endow strong chemodynamic therapy (CDT) effect. Taking the advantages of the mesoporous structure of SiNWs, the SDT and CDT effects of Si-Pt NCs are stronger than those of the pure Pt NPs and SiNWs. Besides, the mild photothermal effect of Si-Pt NCs further improves the SDT&CDT activity and realizes the combined cancer therapy. Conclusion: The developed Si-Pt NCs with the ability of photothermal enhanced SDT/CDT combined therapy play a momentous role in the novel cancer treatment.


Subject(s)
Platinum/chemistry , Silicon/chemistry , Ultrasonic Therapy/methods , Cell Line, Tumor , China , Combined Modality Therapy , Humans , Metal Nanoparticles , Nanocomposites , Nanoparticles , Nanowires/chemistry , Reactive Oxygen Species , Tumor Microenvironment
12.
Nat Commun ; 12(1): 6007, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34650084

ABSTRACT

Exploring new materials is essential in the field of material science. Especially, searching for optimal materials with utmost atomic utilization, ideal activities and desirable stability for catalytic applications requires smart design of materials' structures. Herein, we report iridium metallene oxide: 1 T phase-iridium dioxide (IrO2) by a synthetic strategy combining mechanochemistry and thermal treatment in a strong alkaline medium. This material demonstrates high activity for oxygen evolution reaction with a low overpotential of 197 millivolt in acidic electrolyte at 10 milliamperes per geometric square centimeter (mA cmgeo-2). Together, it achieves high turnover frequencies of 4.2 sUPD-1 (3.0 sBET-1) at 1.50 V vs. reversible hydrogen electrode. Furthermore, 1T-IrO2 also shows little degradation after 126 hours chronopotentiometry measurement under the high current density of 250 mA cmgeo-2 in proton exchange membrane device. Theoretical calculations reveal that the active site of Ir in 1T-IrO2 provides an optimal free energy uphill in *OH formation, leading to the enhanced performance. The discovery of this 1T-metallene oxide material will provide new opportunities for catalysis and other applications.

13.
Nanoscale ; 13(33): 14089-14095, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34477690

ABSTRACT

Introducing the effect of light into an electrocatalytic system is an effective method to improve electrocatalytic carbon dioxide reduction (CO2RR). Here, the composite catalyst (ZIF/Co-C3N4) was prepared for the electrocatalytic reduction of carbon dioxide. The Faraday efficiency of the catalytic reduction of CO2 to CO under light could reach 90.34% at -0.67 V vs. the RHE (reversible hydrogen electrode), which was 30% higher than that obtained under darkness, and the overpotential was reduced by 200 mV. Chemical kinetics experiments and in-situ transient photovoltage (TPV) tests show that the reason for highly efficient CO2RR is intermediate CO2- formed by activated CO2 in the electrocatalytic system under light. This work offers a deep insight into the photo-activated electrocatalytic reduction of carbon dioxide, and also opens a new way to devise efficient catalysts for CO2RR.

14.
Small ; 17(32): e2101727, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34216433

ABSTRACT

Transition metal oxides (TMOs) have been under the spotlight as promising precatalysts for electrochemical oxygen evolution reaction (OER) in alkaline media. However, the slow and incomplete self-reconstruction from TMOs to (oxy)hydroxides as well as the formed (oxy)hydroxides with unmodified electronic structure gives rise to the inferior OER performance to the noble metal oxide ones. Herein, a unique dual metal oxides lattice coupling strategy is proposed to fabricate carbon cloth-supported ultrathin nanowires arrays, which are composed of pseudo-periodically welded NiO with CeO2 nanocrystals (NiO/CeO2 NW@CC). When served as an OER precatalyst in 1.0 m KOH, the NiO/CeO2 NW@CC shows an ultralow overpotential of 330 mV at 50 mA cm-2 , along with an impressive cycle durability of more than 3 days even at 50 mA cm-2 , surpassing CC-supported NiO and commercial IrO2 catalysts. The combined experimental and theoretical investigations unveil that the atomic coupling of CeO2 can not only appreciably trigger the generation of oxygen vacancies and expedite phase transformation of NiO into active NiOOH, but also in situ create a chemical bond with the formed NiOOH and enable the electron injection, thus effectively inhibiting the aggregation of the accessible NiOOH nanodomains and optimizing their reaction free energy towards oxygen-containing intermediates.

15.
ACS Appl Mater Interfaces ; 13(21): 24702-24709, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34027657

ABSTRACT

Methanol aqueous phase reforming (MAPR) reaction under mild conditions is one of the most practical ways to generate hydrogen (H2), in which the liquid vaporization unit could be removed by the water phase reforming, making the structure of an in situ H2 production reactor more compact. In this work, the H2 production performances of the metal-free catalyst, N-doped carbon dots/g-C3N4 (NCDs/g-C3N4; CN-x) composites, was investigated for the MAPR reaction under low temperature and normal pressure. The optimized metal-free catalyst (NCDs/g-C3N4; CN-0.7) displays a H2 yield of 19.5 µmol g-1 h-1 at 80 °C. More importantly, a clear understanding on the effective MAPR reaction at low temperature and normal pressure was acquired from in situ diffuse reflectance FTIR spectroscopy and the transient photovoltage test. The introduction of NCDs leads to the localization of surface charge, which is beneficial to the selective adsorption and polarization activation of polar molecules on the catalyst surface. This work provides a new strategy for the carbon-based catalyst design of the MAPR reaction at low temperatures.

16.
ACS Appl Mater Interfaces ; 13(21): 24814-24823, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34009941

ABSTRACT

Photoassisted electrocatalytic (P-EC) water splitting for H2 production has received much attention. Here, we report a metal-free bifunctional photoassisted catalyst of a polyaniline/carbon dots (PANI/CDs) composite for overall water splitting. In a neutral electrolyte, under visible light, the overpotentials of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for PANI/CDs/NF are reduced by 150 and 65 mV to reach the current densities of 30 and 20 mA cm-2, respectively. In a full water-splitting cell, under visible light, the current density is 13.27 mA cm-2 at 2.0 V, which increases by 62.8% compared with that under the dark conditions (8.15 mA cm-2). The in situ transient photovoltage (TPV) tests were used to study the light-induced effects on half-reactions of water splitting, as well as the charge-transfer kinetic characteristics at the catalyst interface.

17.
Angew Chem Int Ed Engl ; 60(22): 12585-12590, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33754433

ABSTRACT

Here, we show the fabrication of the carbon dots (CDs) with green and orange emissions from PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride). Using these CDs as emitters, the orange (or green) CDs LEDs were fabricated, which show electroluminescence (EL) spectra centered at 560 nm (or 498 nm) with an external quantum efficiency (EQE) of 1.98 % (1.76 %) adhering a luminescence of 626 cd m-2 (or 519 cd m-2 ). The machine learning was successfully used to predict PL CCT value. With the model, the white photoluminescence (PL) emission with adjustable correlated color temperature (CCT) from 3093 to 11018 K via combining blue, green, and orange CDs was achieved. Then, we obtained the warm white CDs LEDs with CCT of 3107, 4071 and 4548 K, and cold white CDs LEDs with CCT of 5632 (CIE coordinates of (0.33, 0.33), EQE: 1.18 %, luminescence: 598 cd m-2 ) and 6034 K accurately.

19.
Nat Commun ; 12(1): 483, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33473132

ABSTRACT

Artificial photosynthesis of H2O2 from H2O and O2, as a spotless method, has aroused widespread interest. Up to date, most photocatalysts still suffer from serious salt-deactivated effects with huge consumption of photogenerated charges, which severely limit their wide application. Herein, by using a phenolic condensation approach, carbon dots, organic dye molecule procyanidins and 4-methoxybenzaldehyde are composed into a metal-free photocatalyst for the photosynthetic production of H2O2 in seawater. This catalyst exhibits high photocatalytic ability to produce H2O2 with the yield of 1776 µmol g-1h-1 (λ ≥ 420 nm; 34.8 mW cm-2) in real seawater, about 4.8 times higher than the pure polymer. Combining with in-situ photoelectrochemical and transient photovoltage analysis, the active site and the catalytic mechanism of this composite catalyst in seawater are also clearly clarified. This work opens up an avenue for a highly efficient and practical, available catalyst for H2O2 photoproduction in real seawater.

20.
ACS Appl Mater Interfaces ; 13(4): 5877-5886, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33482691

ABSTRACT

Chiral carbon dots (CDs) integrated the advantages of achiral CDs and the unique chiral property, which expand the prospect of the biological applications of CDs. However, the structure control and the origin of chirality for chiral CDs remain unclear. Herein, chiral CDs were obtained by thermal polymerization of chiral amino acids and citric acid, and their handedness of chirality could be controlled by adjusting the reaction temperature, which leads to different kinds of surface modifications. With aliphatic amino acids as a chiral source, all of the CDs that reacted at different temperatures (90-200 °C) have the same handedness of the chiral source. But with aromatic amino acids as a chiral source, CDs with maintained or inversed handedness compared with the chiral source could be obtained by adjusting the reaction temperature. Below a temperature of 120 °C, the chiral source was modified with CDs by esterification and transferred the handedness of chirality; at high temperatures (above 150 °C), which mainly connected by amidation accompanying with the formation of rigid structure generated by the π conjugation between the aromatic nucleus of chiral source and the carbon core of CDs, caused the inversing of the chiral signal. Further, we investigated the chiral effects of CDs on the glucose oxidase activity for a highly sensitive electrochemical biosensor.


Subject(s)
Amino Acids/chemistry , Biosensing Techniques/methods , Glucose Oxidase/chemistry , Glucose/analysis , Quantum Dots/chemistry , Carbon/chemistry , Citric Acid/chemistry , Enzyme Stability , Esterification , Models, Molecular , Polymerization , Quantum Dots/ultrastructure , Stereoisomerism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...