Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
J Ethnopharmacol ; 332: 118286, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38723919

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Di-Long (Pheretima vulgaris) is a classic animal sourced traditional Chinese medicine. It has been used for the treatment of joint inflammation and arthralgia for over two thousand years due to its effects of Tong-Luo-Zhi-Tong (dredging collaterals and alleviating pain). Our previous study showed that Chinese medicine Di-Long has significant anti-rheumatoid arthritis (RA) effects. AIM OF THE STUDY: Considering Di-Long as a potential source of active compounds with specific anti-RA therapeutic effects, this research was to obtain the anti-RA target-specific active fraction from Di-Long extracts (DL), and to further explore the chemical basis and verify the anti-RA mechanism of this active fraction. MATERIALS AND METHODS: Transcriptomic was applied to obtain the main anti-RA targets of DL on human RA fibroblast-like synoviocytes (FLS) and validated by qPCR. The target-corresponding active fraction was isolated from DL by ethanol precipitation and gel chromatography, and analyzed by nanoliter chromatography-mass spectrometry. Anti-RA effects of this active fraction was investigated by collagen-induced arthritis (CIA) in mice, and anti-RA mechanisms were verified in cocultured model of rat FLS and peripheral blood lymphocytes. RESULTS: We confirmed that CXCL10/CXCR3 was the main anti-RA target of DL. The active fraction - A (2182 - 890 Da) was isolated from DL based on its CXCL10 inhibiting effects in RA-FLS. Fraction A contains 195 peptides (192 were newly discovered), 26 of which might be bioactive and were considered to be the chemical basis of its anti-RA effects. Fraction A significantly ameliorated the joint destruction and overall inflammation in CIA mice, and downregulated CXCR3 expression in mice joint. Fraction A inhibited the chemotaxis of Th-cells in rat peripheral blood lymphocytes towards the TNF-α-induced rat FLS through CXCL10/CXCR3 pathway. CONCLUSIONS: Our work indicated that active fraction from DL containing small peptides exhibits promising therapeutic effects for RA through inhibiting CXCL10/CXCR3 chemotaxis.


Subject(s)
Antirheumatic Agents , Arthritis, Experimental , Arthritis, Rheumatoid , Chemokine CXCL10 , Chemotaxis , Receptors, CXCR3 , Synovial Membrane , Animals , Receptors, CXCR3/metabolism , Chemokine CXCL10/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/isolation & purification , Rats , Humans , Chemotaxis/drug effects , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Mice , Mice, Inbred DBA , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Synoviocytes/drug effects , Synoviocytes/metabolism
2.
Front Immunol ; 15: 1347415, 2024.
Article in English | MEDLINE | ID: mdl-38736878

ABSTRACT

Objective: Emerging evidence has shown that gut diseases can regulate the development and function of the immune, metabolic, and nervous systems through dynamic bidirectional communication on the brain-gut axis. However, the specific mechanism of intestinal diseases and vascular dementia (VD) remains unclear. We designed this study especially, to further clarify the connection between VD and inflammatory bowel disease (IBD) from bioinformatics analyses. Methods: We downloaded Gene expression profiles for VD (GSE122063) and IBD (GSE47908, GSE179285) from the Gene Expression Omnibus (GEO) database. Then individual Gene Set Enrichment Analysis (GSEA) was used to confirm the connection between the two diseases respectively. The common differentially expressed genes (coDEGs) were identified, and the STRING database together with Cytoscape software were used to construct protein-protein interaction (PPI) network and core functional modules. We identified the hub genes by using the Cytohubba plugin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to identify pathways of coDEGs and hub genes. Subsequently, receiver operating characteristic (ROC) analysis was used to identify the diagnostic ability of these hub genes, and a training dataset was used to verify the expression levels of the hub genes. An alternative single-sample gene set enrichment (ssGSEA) algorithm was used to analyze immune cell infiltration between coDEGs and immune cells. Finally, the correlation between hub genes and immune cells was analyzed. Results: We screened 167 coDEGs. The main articles of coDEGs enrichment analysis focused on immune function. 8 shared hub genes were identified, including PTPRC, ITGB2, CYBB, IL1B, TLR2, CASP1, IL10RA, and BTK. The functional categories of hub genes enrichment analysis were mainly involved in the regulation of immune function and neuroinflammatory response. Compared to the healthy controls, abnormal infiltration of immune cells was found in VD and IBD. We also found the correlation between 8 shared hub genes and immune cells. Conclusions: This study suggests that IBD may be a new risk factor for VD. The 8 hub genes may predict the IBD complicated with VD. Immune-related coDEGS may be related to their association, which requires further research to prove.


Subject(s)
Computational Biology , Dementia, Vascular , Gene Expression Profiling , Gene Regulatory Networks , Inflammatory Bowel Diseases , Protein Interaction Maps , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Computational Biology/methods , Dementia, Vascular/genetics , Dementia, Vascular/immunology , Databases, Genetic , Transcriptome , Gene Ontology
3.
World J Diabetes ; 15(3): 552-564, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591089

ABSTRACT

BACKGROUND: The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus (T2DM) is currently controversial. It is unknown whether this association can be gene realized across different populations. AIM: To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM. METHODS: We searched PubMed, Embase, Web of Science, Cochrane Library, Medline, Baidu Academic, China National Knowledge Infrastructure, China Biomedical Liter-ature Database, and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12, 2022. Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature. RESULTS: Twelve case-control studies (including 11273 cases and 11654 controls) met our inclusion criteria. In the full population, allelic model [odds ratio (OR): 1.19; 95% confidence interval (95%CI): 1.09-1.29; P < 0.0001], recessive model (OR: 1.20; 95%CI: 1.11-1.29; P < 0.0001), dominant model (OR: 1.27. 95%CI: 1.14-1.42; P < 0.0001), and codominant model (OR: 1.36; 95%CI: 1.15-1.60; P = 0.0003) (OR: 1.22; 95%CI: 1.10-1.36; P = 0.0002) indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM. In stratified analysis, this association was confirmed in Asian populations: allelic model (OR: 1.25; 95%CI: 1.13-1.37; P < 0.0001), recessive model (OR: 1.29; 95%CI: 1.11-1.49; P = 0.0007), dominant model (OR: 1.35; 95%CI: 1.20-1.52; P < 0.0001), codominant model (OR: 1.49; 95%CI: 1.22-1.81; P < 0.0001) (OR: 1.26; 95%CI: 1.16-1.36; P < 0.0001). In non-Asian populations, this association was not significant: Allelic model (OR: 1.06, 95%CI: 0.98-1.14; P = 0.12), recessive model (OR: 1.04; 95%CI: 0.75-1.42; P = 0.83), dominant model (OR: 1.06; 95%CI: 0.98-1.15; P = 0.15), codominant model (OR: 1.08; 95%CI: 0.82-1.42; P = 0.60. OR: 1.15; 95%CI: 0.95-1.39; P = 0.14). CONCLUSION: KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population. Carriers of the C allele had a higher risk of T2DM. This association was not significant in non-Asian populations.

4.
Cancer Res ; 84(11): 1781-1798, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38507720

ABSTRACT

Inflammatory breast cancer (IBC) is a highly aggressive subtype of breast cancer characterized by rapidly arising diffuse erythema and edema. Genomic studies have not identified consistent alterations and mechanisms that differentiate IBC from non-IBC tumors, suggesting that the microenvironment could be a potential driver of IBC phenotypes. Here, using single-cell RNA sequencing, multiplex staining, and serum analysis in patients with IBC, we identified enrichment of a subgroup of luminal progenitor (LP) cells containing high expression of the neurotropic cytokine pleiotrophin (PTN) in IBC tumors. PTN secreted by the LP cells promoted angiogenesis by directly interacting with the NRP1 receptor on endothelial tip cells located in both IBC tumors and the affected skin. NRP1 activation in tip cells led to recruitment of immature perivascular cells in the affected skin of IBC, which are correlated with increased angiogenesis and IBC metastasis. Together, these findings reveal a role for cross-talk between LPs, endothelial tip cells, and immature perivascular cells via PTN-NRP1 axis in the pathogenesis of IBC, which could lead to improved strategies for treating IBC. SIGNIFICANCE: Nonmalignant luminal progenitor cells expressing pleiotrophin promote angiogenesis by activating NRP1 and induce a prometastatic tumor microenvironment in inflammatory breast cancer, providing potential therapeutic targets for this aggressive breast cancer subtype.


Subject(s)
Carrier Proteins , Cytokines , Inflammatory Breast Neoplasms , Neovascularization, Pathologic , Tumor Microenvironment , Humans , Female , Cytokines/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Animals , Mice , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Inflammatory Breast Neoplasms/pathology , Inflammatory Breast Neoplasms/metabolism , Inflammatory Breast Neoplasms/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics , Cell Line, Tumor , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplasm Metastasis , Angiogenesis
5.
J Adv Res ; 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38373649

ABSTRACT

BACKGROUND: Lipid metabolism has been implicated in a variety of normal cellular processes and strongly related to the development of multiple diseases, including tumor. Tumor-associated macrophage (TAM) has emerged as a crucial regulator in tumorigenesis and promising target for tumor treatment. AIM OF REVIEW: A thorough understanding of TAM lipid metabolism and its value in tumorigenesis may provide new ideas for TAM-based anti-tumor therapy. Key scientific concepts of review: TAMs can be divided into two main types, M1-like TAMs and M2-like TAMs, which play anti-tumor and pro-tumor functions in tumor occurrence and development, respectively. Accumulating evidence has shown that lipid metabolic reprogramming, including fatty acid uptake and utilization, cholesterol expulsion, controls the polarization of TAMs and affects the tumorgenesis. These advances in uncovering the intricacies of lipid metabolism and TAMs have yielded new insights on tumor development and treatment. In this review, we aim to provide an update on the current understanding of the lipid metabolic reprogramming made by TAMs to adapt to the harsh tumor microenvironment (TME). In particular, we emphasize that there is complex lipid metabolism connections between TAMs and distinct tumors, which influences TAM to bias from M1 to M2 phenotype in tumor progression, and ultimately promotes tumor occurrence and development. Finally, we discuss the existing issues on therapeutic strategies by reprogramming TAMs based on lipid metabolism regulation (or increasing the ratio of M1/M2-like TAMs) that could be applied in the future to clinical tumor treatment.

6.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377137

ABSTRACT

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Subject(s)
Hemiptera , Insecticides , Receptors, Nicotinic , Animals , Receptors, Nicotinic/genetics , Insecticides/pharmacology , Hemiptera/genetics , Drosophila melanogaster , Neonicotinoids/pharmacology , Mutation
7.
Insects ; 15(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38392550

ABSTRACT

This study explores the impact of anthropogenic land use changes on the macroinvertebrate community structure in the streams of the Cangshan Mountains. Through field collections of macroinvertebrates, measurement of water environments, and delineation of riparian zone land use in eight streams, we analyzed the relationship between land use types, stream water environments, and macroinvertebrate diversities. The results demonstrate urban land use type and water temperature are the key environmental factors driving the differences in macroinvertebrate communities up-, mid-, and downstream. The disturbed streams had lower aquatic biodiversity than those in their natural state, showing a decrease in disturbance-sensitive aquatic insect taxa and a more similar community structure. In the natural woodland area, species distributions may be constrained by watershed segmentation and present more complex community characteristics.

8.
Metab Brain Dis ; 39(1): 89-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37999884

ABSTRACT

Wilson disease (WD) is a rare hereditary copper metabolism disorder, wherein cognitive impairment is a common clinical symptom. Chrysophanol (CHR) is an active compound with neuroprotective effects. The study aims to investigate the neuroprotective effect of CHR in WD and attempted to understand the potential mechanisms. Network pharmacology analysis was applied to predict the core target genes of CHR against cognitive impairment in WD. The rats fed with copper-laden diet for 12 weeks, and the effect of CHR on the copper content in liver and 24-h urine, the learning and memory ability, the morphological changes and the apoptosis level of neurons in hippocampal CA1 region, the expression level of Bax, Bcl-2, Cleaved Caspase-3, p-PI3K, PI3K, p-AKT, and AKT proteins were detected. Network pharmacology analysis showed that cell apoptosis and PI3K-AKT signaling pathway might be the main participants in CHR against cognitive impairment in WD. The experiments showed that CHR could reduce the copper content in liver, increase the copper content in 24-h urine, improve the ability of the learning and memory, alleviate the damage and apoptosis level of hippocampal neurons, down-regulate the expression of Bax, Cleaved Caspase-3, and up-regulate the expressions of Bcl-2, p-PI3K/PI3K, p-AKT/AKT. These results suggested that CHR could alleviate cognitive impairment in WD by inhibiting cell apoptosis and triggering the PI3K-AKT signaling pathway.


Subject(s)
Anthraquinones , Cognitive Dysfunction , Hepatolenticular Degeneration , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , Hepatolenticular Degeneration/drug therapy , Copper , bcl-2-Associated X Protein , Network Pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Apoptosis
9.
Neuropsychiatr Dis Treat ; 19: 2681-2696, 2023.
Article in English | MEDLINE | ID: mdl-38077239

ABSTRACT

Background: Wilson's disease (WD), an autosomal recessive genetic disease, is characterized by copper metabolism disorder. WD patients may have a series of cognitive deficits in terms of neurological symptoms. Ferroptosis (FPT), a type of programmed cell death, is involved in the pathological progression of various cognitive disorders, and silent information regulator 1 (SIRT1) is considered to be a key factor in FPT. Ferulic acid (FA) is a traditional Chinese medicine monomer, with a remarkable effect in the clinical treatment of cognitive impairment-related disease. However, its intrinsic effect on FPT is still unclear. This study aims to investigate the protective effect of FA on cognitive impairment in animal and cell models of WD, and whether the pharmacological mechanism is related to the SIRT1-mediated FPT signaling pathway. Methods: Copper-loaded WD rats and PC12 cells WD were used as models of cognitive dysfunction in vivo and in vitro, respectively. Morris Water Maze (MWM) was used to evaluate the spatial exploration and memory abilities of rats. HE staining was used to observe neuronal damage in the CA1 region of the rat hippocampus. Immunofluorescence (IF) was used to detect the expression of GPX4 protein. Transmission electron microscopy (TEM) was used to observe the ultrastructure of neurons. The levels of Fe2+, MDA, SOD, GSH, 4HNE, and ROS were detected. Western blot and qRT-PCR were used to detect the protein and mRNA levels of SIRT1, Nrf2, SCL7A11, and GPX4. Results: In the WD copper-loaded model rats, MWM, TEM, and IF results showed that FA could promote the repair of learning and memory function, improve the morphological damage to hippocampal neurons, and maintain mitochondria integrity. In the PC12 cell experiment, the MTT method showed that FA increased the viability of copper-overloaded cell models. Western blot and qRT-PCR results confirmed that FA significantly increased the expression of proteins and mRNA in SIRT1, Nrf2, SCL7A11, and GPX4. In addition, FA reversed the expression of oxidative stress-related indicators, including MDA, SOD, GSH, 4HNE, and ROS. Conclusion: FA alleviates hippocampal neuronal injury by activating SIRT1-mediated FPT, providing a valuable candidate for traditional Chinese medicine monomer for the clinical therapeutics of WD cognitive impairment.

10.
Int J Ophthalmol ; 16(12): 1962-1970, 2023.
Article in English | MEDLINE | ID: mdl-38111930

ABSTRACT

AIM: To characterize the ophthalmic clinical phenotype of a family with retinitis pigmentosa (RP) and closed-angle glaucoma and to detect pathogenic genes and mutation sites causing RP in this family. METHODS: Ophthalmic clinic performance was examined in detail in 8 enrolled family members. Genomic DNA was extracted from the peripheral blood of 4 family members for whole-exome sequencing (WES) to select potential genetic mutations whose structures were identified by bioinformatics analysis. Then, Sanger sequencing was used in 12 family members and control group members to validate and confirm the disease-causing mutation loci, and we analyzed the genotype-phenotype relationships. RESULTS: The known c.512C>T (p.P171L) mutation in the rhodopsin (RHO) gene was only found in afflicted family members and was confirmed by WES and Sanger sequencing as the pathogenic mutation in this family. In addition to being diagnosed with RP, family member III:4 was found to have bilateral closed-angle glaucoma, high myopia, and concurrent cataracts, and family members II:2 and II:4 had pathological changes of anterior chamber angle narrowing. Family members IV:3 and IV:4 were found to have retinoschisis. CONCLUSION: Glaucoma and related pathological changes, such as retinoschisis, in family members are preliminarily considered RP complications caused by RHO mutation.

11.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5315-5325, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114121

ABSTRACT

This study aims to investigate the effects and the molecular mechanism of Huangdi Anxiao Capsules(HDAX)-containing serum in protecting the rat adrenal pheochromocytoma(PC12) cells from diabetes-associated cognitive dysfunction induced by high glucose and whether the mechanism is related to the regulation of NOD-like receptor thermal protein domain associated protein 3(NLRP3)-mediated pyroptosis. The PC12 cell model of diabetes-associated cognitive dysfunction induced by high glucose was established and mcc950 was used to inhibit NLRP3. PC12 cells were randomized into control, model, HDAX-containing serum, mcc950, and HDAX-containing serum+mcc950 groups. Methyl thiazolyl tetrazolium(MTT) assay was employed to determine the viability, and Hoechst 33258/PI staining to detect pyroptosis of PC12 cells. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1 beta(IL-1ß) and IL-18. Western blot was employed to determine the protein levels of postsynaptic density protein 95(PSD-95), NLRP3, apoptosis-associated speck-like protein containing a CARD(ASC), gasdermin D(GSDMD), GSDMD-N, and cleaved cysteinyl aspartate specific proteinase-1(caspase-1), and RT-PCR to determine the mRNA levels of NLRP3, ASC, GSDMD, and caspase-1. The immunofluorescence assay was adopted to measure the levels and distribution of NLRP3 and GSDMD-N in PC12 cells. Compared with the control group, the model group showed decreased cell proliferation, increased PI positive rate, down-regulated protein level of PSD-95, up-regulated protein levels of NLRP3, ASC, GSDMD-N, GSDMD, and cleaved caspase-1, up-regulated mRNA levels of NLRP3, ASC, GSDMD, and caspase-1, and elevated levels of IL-1ß and IL-18. Compared with the model group, HDAX-containing serum, mcc950, and the combination of them improved cell survival rate and morphology, decreased the PI positive rate, down-regulated the protein levels of NLRP3, ASC, GSDMD-N, GSDMD, and cleaved caspase-1 and the mRNA levels of NLRP3, ASC, GSDMD, and caspase-1, and promoted the secretion of IL-1ß and IL-18. The findings demonstrated that HDAX-containing serum can inhibit the pyroptosis-mediated by NLRP3 and protect PC12 cells from the cognitive dysfunction induced by high glucose.


Subject(s)
Diabetes Mellitus , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , Pyroptosis/physiology , Caspases , Glucose , RNA, Messenger
12.
Hum Vaccin Immunother ; 19(3): 2285089, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38111106

ABSTRACT

Vaccination plays a key role in preventing morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to evaluate the safety and immunogenicity of a SARS-CoV-2 messenger ribonucleic acid (mRNA) vaccine SYS6006. In the two randomized, observer-blinded, placebo-controlled phase 1 trials, 40 adult participants aged 18-59 years and 40 elderly participants aged 60 years or more were randomized to receive two doses of SYS6006 or placebo (saline). Adverse events (AEs) were collected through 30 days post the second vaccination. Immunogenicity was assessed by live-virus neutralizing antibody (Nab), spike protein (S1) binding antibody (S1-IgG), and cellular immunity. The result showed that 7/15, 9/15 and 4/10 adult participants, and 9/15, 8/15 and 4/10 elderly participants reported at least one AE in the 20-µg, 30-µg and placebo groups, respectively. Most AEs were grade 1. Injection-site pain was the most common AE. Two adults and one elder reported fever. No vaccination-related serious AE was reported. SYS6006 elicited wild-type Nab response with a peak geometric mean titer of 232.1 and 130.6 (adults), and 48.7 and 66.7 (elders), in the 20-µg and 30-µg groups, respectively. SYS6006 induced moderate-to-robust Nab response against Delta, and slight Nab response against Omicron BA.2 and BA.5. Robust IgG response against wild type and BA.2 was observed. Cellular immune response was induced. In conclusion, two-dose primary vaccination with SYS6006 demonstrated good safety and immunogenicity during a follow-up period of 51 days in immunologically naive population aged 18 years or more. (Trial registry: Chictr.org.cn ChiCTR2200059103 and ChiCTR2200059104).


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , Humans , Antibodies, Neutralizing , Antibodies, Viral , China , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine , Immunoglobulin G , mRNA Vaccines , RNA, Messenger , SARS-CoV-2 , Vaccination , Adolescent , Young Adult , Middle Aged
13.
Front Genet ; 14: 1250629, 2023.
Article in English | MEDLINE | ID: mdl-38125751

ABSTRACT

Pulmonary hypertension (PH) is a pathological disorder with multiple clinical manifestations that lead to cardiovascular and respiratory diseases in most patients. Recent studies have revealed that microRNAs (miRNAs) play important roles as upstream signaling molecules in several diseases, including PH. However, miRNAs that can be used as diagnostic or prognostic biomarkers for PH have not been identified. Thus, in this study, peripheral blood samples obtained from patients with PH and healthy individuals were subjected to genome-wide miRNA sequencing and transcriptome analysis. We screened 136 differentially expressed miRNAs in patients with PH and verified that four differentially expressed miRNAs, namely, hsa-miR-1304-3p, hsa-miR-490-3p, hsa-miR-11400, and hsa-miR-31-5p, could be used as clinical diagnostic biomarkers for pulmonary arterial hypertension. Our findings provide a basis for further in-depth investigations of the specific mechanisms of miRNAs in PH.

14.
Pestic Biochem Physiol ; 196: 105635, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945266

ABSTRACT

The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.


Subject(s)
Hemiptera , Insecticides , Animals , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Hemiptera/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Insecticide Resistance/genetics , Uridine Diphosphate/metabolism
15.
BMC Bioinformatics ; 24(1): 450, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017410

ABSTRACT

BACKGROUND: Acute myeloid leukaemia (AML) is characterised by the malignant accumulation of myeloid progenitors with a high recurrence rate after chemotherapy. Blasts (leukaemia cells) exhibit a complete myeloid differentiation hierarchy hiding a wide range of temporal information from initial to mature clones, including genesis, phenotypic transformation, and cell fate decisions, which might contribute to relapse in AML patients. METHODS: Based on the landscape of AML surface antigens generated by mass cytometry (CyTOF), we combined manifold analysis and principal curve-based trajectory inference algorithm to align myelocytes on a single-linear evolution axis by considering their phenotype continuum that correlated with differentiation order. Backtracking the trajectory from mature clusters located automatically at the terminal, we recurred the molecular dynamics during AML progression and confirmed the evolution stage of single cells. We also designed a 'dispersive antigens in neighbouring clusters exhibition (DANCE)' feature selection method to simplify and unify trajectories, which enabled the exploration and comparison of relapse-related traits among 43 paediatric AML bone marrow specimens. RESULTS: The feasibility of the proposed trajectory analysis method was verified with public datasets. After aligning single cells on the pseudotime axis, primitive clones were recognized precisely from AML blasts, and the expression of the inner molecules before and after drug stimulation was accurately plotted on the trajectory. Applying DANCE to 43 clinical samples with different responses for chemotherapy, we selected 12 antigens as a general panel for myeloblast differentiation performance, and obtain trajectories to those patients. For the trajectories with unified molecular dynamics, CD11c overexpression in the primitive stage indicated a good chemotherapy outcome. Moreover, a later initial peak of stemness heterogeneity tended to be associated with a higher risk of relapse compared with complete remission. CONCLUSIONS: In this study, pseudotime was generated as a new single-cell feature. Minute differences in temporal traits among samples could be exhibited on a trajectory, thus providing a new strategy for predicting AML relapse and monitoring drug responses over time scale.


Subject(s)
Antigens, Surface , Leukemia, Myeloid, Acute , Child , Humans , Neoplasm Recurrence, Local , Leukemia, Myeloid, Acute/genetics , Phenotype , Recurrence
16.
Breast Care (Basel) ; 18(5): 390-398, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37901045

ABSTRACT

Objective: Dyslipidemia can promote cell proliferation, malignant transformation, metastasis, and cancer recurrence. Moreover, it could also affect immune infiltration in the tumor microenvironment. Therefore, we aimed to explore the effects of lipid levels on tumor-infiltrating lymphocytes (TILs) and prognosis in patients with triple-negative breast cancer (TNBC). Methods: Samples from 222 patients with TNBC from July 2007 to December 2019 were obtained from the tissue specimen banks in 3 hospitals. The blood samples were used to detect the levels of lipid levels such as apolipoprotein B (Apo B), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C). The TILs in the 222 TNBC tissues were detected using hematoxylin and eosin (H&E) staining, and the relationship between the lipid levels, clinical characteristics, and prognosis was analyzed. Results: Among TNBC patients, the overall survival (OS) time and disease-free survival (DFS) time were lower in patients with high LDL-C levels than those with low LDL-C levels (p < 0.01, respectively). The DFS was shorter in patients with low stromal TIL (STIL) levels than those with moderate or high STIL levels (p = 0.023). Multifactor Cox regression analysis showed that LDL-C level, Apo B level, and lymphocyte-predominant breast cancer were independent risk factors for OS in TNBC patients. The number of positive lymph nodes, postoperative staging, and total amount of TILs were independent risk factors for DFS in TNBC patients. Conclusion: The LDL-C and STIL levels were correlated with survival and prognosis in patients with TNBC.

17.
3 Biotech ; 13(11): 348, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37780805

ABSTRACT

Alzheimer's disease (AD) is a common age-related chronic and neurodegenerative disease that has become a global health problem. AD pathogenesis is complex, and the clinical efficacy of commonly used anti-AD drugs is suboptimal. Recent research has revealed a close association between AD-induced damage and the activation of ferroptosis signaling pathways. Chrysophanol (CHR) the principal medicinal component of Rhubarb, has been reported to have anti-AD effects and can reduce ROS levels in AD-damaged models. AD has been linked to the activation of ferroptosis signaling pathways, which has an important feature of higher levels of reactive oxygen species (ROS). Therefore, the present study explored whether CHR had an anti-AD effect by regulating the ferroptosis levels in AD injury models. Morris water maze, novel object recognition test, Y-maze test, Hematoxylin-eosin (H&E) staining, western blotting, ROS measurement, GPx activity measurement, LPO measurement, transmission electron microscopy, live/dead cell staining were used to investigate the changes in spatial memory level and ferroptosis level in AD model, and the intervention effect of CHR. CHR improved the spatial memory level of AD rat models, reduced the level of hippocampal neuron damage, and improved the survival rate of PC12 cells damaged by ß-amyloid (Aß). Meanwhile, CHR increased glutathione peroxidase-4 (GPX4) protein expression, GPx activity, and GSH, decreased ROS and LPO levels in AD rat models and Aß-damaged PC12 cells, and improved mitochondrial pathological damage. Our findings suggest that CHR may play a protective role in AD injury by lowering ferroptosis levels, which may provide a potential pathway for developing drugs for AD. However, the mechanism of CHR's role requires further investigation.

18.
Nat Prod Res ; : 1-7, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37850480

ABSTRACT

Seven flavanones, including two new compounds coupled with styryl units, communins C (1) and D (2), as well as five known compounds, were isolated from Polytrichum commune Hedw. The planar structures of all compounds were determined using extensive spectroscopic analysis. The absolute configurations of two new compounds were assigned by comparing experimental ECD with calculated ECD. The cytotoxicity of all isolates against HCT-116, BGC803, MCF7 and PANC-1 cell lines was evaluated. Communin D exhibited significant cytotoxic activity on BGC803 cells with an IC50 value of 9.3 µM.

19.
Neuropathol Appl Neurobiol ; 49(5): e12934, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37705167

ABSTRACT

BACKGROUND AND PURPOSE: Hyperphosphorylation of Tau is one of the important pathological features of Alzheimer's disease (AD). Therefore, studying the mechanisms behind Tau hyperphosphorylation is crucial in exploring the pathogenesis of neurological damage in AD. METHODS: In this study, after the establishment of rat models of AD, quantitative phosphoproteomics and proteomics were performed to identify proteins, showing that phosphorylation of microtubule associated protein 1A (MAP 1A) was lower in the model group. Western blot confirmed the changes of MAP 1A in the SD rats, APP/PS1 transgenic mice and cell AD models. To further study the molecular mechanism of recombinant MAP 1A phosphorylation affecting Tau phosphorylation, interfering siRNA-MAP 1A and protein immunoprecipitation reaction analysis were performed in AD cell models. RESULTS: Cyclin-dependent kinase 5 (CDK5) showed reduced binding to MAP 1A and increased binding to Tau, resulting in a decrease in phosphorylated MAP 1A (p-MAP 1A) and an increase in phosphorylated Tau (p-Tau), and MAP 1A silencing promoted binding of CDK5-Tau and increased Tau phosphorylation, thereby reducing the cell survival rate. CONCLUSIONS: In summary, we found that p-MAP 1A downregulation associated with p-Tau upregulation was due to their altered binding forces to CDK5, and MAP 1A could enhance autophosphorylation by competitive binding to CDK5 and antagonise Tau phosphorylation. This leads to neuronal protection and reducing tissue damage levels in AD, which can help better understand the mechanisms of AD pathogenesis.


Subject(s)
Alzheimer Disease , Animals , Mice , Rats , Alzheimer Disease/metabolism , Mice, Transgenic , Phosphorylation , Rats, Sprague-Dawley , tau Proteins/metabolism , Up-Regulation
20.
Biomed Pharmacother ; 167: 115484, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708691

ABSTRACT

Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...