Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(28): 33485-33495, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34232014

ABSTRACT

It remains challenging to promptly inhibit and autonomically heal electrical trees inside insulating dielectrics, which are caused by sustained strong electrical fields and substantially shorten electronic device lifetimes and even cause premature failure of electrical equipment. Therefore, we demonstrate a magnetically targeted ultraviolet (UV)-induced polymerization functional microcapsule (MTUF-MC) to endow insulating materials with physical and electrical dual-damage self-healing capabilities. Specifically, Fe3O4@SiO2 and TiO2 nanoparticles, which serve as magnetic targets and UV shields (thereby preventing the healing agent from prematurely triggering), constitute a functional microcapsule shell, ensuring a low dopant concentration and excellent self-healing ability of the epoxy composites without affecting the intrinsic performance of the matrix. By exploiting in situ electroluminescence originating from electrical trees, UV-induced polymerization of healing agent is handily triggered without any applying external stimuli to intelligently, contactlessly, and autonomously self-healing electrical trees inside insulating dielectrics.

2.
Nanomaterials (Basel) ; 9(5)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126024

ABSTRACT

Despite being discovered more than 20 years ago, nanofluids still cannot be used in the power industry. The fundamental reason is that nano-insulating oil has poor stability, and its electrical performance decreases under negative impulse voltage. We found that C60 nanoparticles can maintain long-term stability in insulating oil without surface modification. C60 has strong electronegativity and photon absorption ability, which can comprehensively improve the electrical performance of insulating oil. This finding has great significance for the industrial application of nano-insulating oil. In this study, six concentrations of nano-C60 modified insulating oil (CMIO) were prepared, and their breakdown strength and dielectric properties were tested. The thermally stimulated current (TSC) curves of fresh oil (FO) and CMIO were experimentally determined. The test results indicate that C60 nanoparticles can simultaneously improve the positive and negative lightning impulse and power frequency breakdown voltage of insulating oil, while hardly increasing dielectric loss. At 150 mg/L, the positive and negative lightning impulse breakdown voltages of CMIO increased by 7.51% and 8.33%, respectively, compared with those of FO. The AC average breakdown voltage reached its peak (18.0% higher compared with FO) at a CMIO concentration of 200 mg/L. Based on the test results and the special properties of C60, we believe that changes in the trap parameters, the strong electron capture ability of C60, and the absorption capacity of C60 for photons enhanced the breakdown performance of insulating oil by C60 nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...