Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 982
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2766-2775, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812177

ABSTRACT

Panax ginseng is reputed to be capable of replenishing healthy Qi and bolstering physical strength, and P. notoginseng can resolve blood stasis and alleviate pain. P. ginseng and P. notoginseng are frequently employed to treat ischemic heart diseases caused by blockages in the heart vessels. Mitochondrial dysfunction often coexists with abnormal mitochondrial morphology, and mitochondrial plasticity and dynamics play key roles in cardiovascular diseases. In this study, primary neonatal rat cardiomyocytes were exposed to 4 hours of hypoxia(H) followed by 2 hours of reoxygenation(R). MitoTracker Deep Red and Hoechst 33342 were used to label mitochondria and nuclei, respectively. Fluorescence images were then acquired using ImageXpress Micro Confocal. Automated image processing and parameter extraction/calculation were carried out using ImagePro Plus. Subsequently, representative parameters were selected as indicators to assess alterations in mitochondrial morphology and function. The active compounds of P. ginseng and P. notoginseng were screened out and identified based on the UPLC-Triple-TOF-MS results and mitochondrial morphometric parameters. The findings demonstrated that RS-2, RS-4, SQ-1, and SQ-4 significantly increased the values of three key morphometric parameters, including mitochondrial length, branching, and area, which might contribute to rescuing morphological features of myocardial cells damaged by H/R injury. Among the active components of the two medicinal herbs, 20(R)-ginsenoside Rg_3, ginsenoside Re, and gypenoside ⅩⅦ exhibited the strongest protective effects on mitochondria in cardiomyocytes. Specifically, 20(R)-ginsenoside Rg_3 might upregulate expression of optic atrophy 1(OPA1) and mitofusin 2(MFN2), and ginsenoside Re and gypenoside ⅩⅦ might selectively upregulate OPA1 expression. Collectively, they promoted mitochondrial membrane fusion and mitigated mitochondrial damage, thereby exerting protective effects on cardiomyocytes. This study provides experimental support for the discovery of novel therapeutic agents for myocardial ischemia-reperfusion injury from P. ginseng and P. notoginseng and offers a novel approach for large-scale screening of bioactive compounds with cardioprotective effects from traditional Chinese medicines.


Subject(s)
Cardiotonic Agents , Drugs, Chinese Herbal , Myocytes, Cardiac , Panax notoginseng , Panax , Rats, Sprague-Dawley , Animals , Rats , Panax/chemistry , Panax notoginseng/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cardiotonic Agents/pharmacology , Chromatography, High Pressure Liquid , Mitochondria/drug effects , Mitochondria/metabolism , Mass Spectrometry
2.
Nat Commun ; 15(1): 4281, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769121

ABSTRACT

Highly selective capture of radiocesium is an urgent need for environmental radioactive contamination remediation and spent fuel disposal. Herein, a strategy is proposed for construction of "inorganic ion-imprinted adsorbents" with ion recognition-separation capabilities, and a metal sulfide Cs2.33Ga2.33Sn1.67S8·H2O (FJSM-CGTS) with "imprinting effect" on Cs+ is prepared. We show that the K+ activation product of FJSM-CGTS, Cs0.51K1.82Ga2.33Sn1.67S8·H2O (FJMS-KCGTS), can reach adsorption equilibrium for Cs+ within 5 min, with a maximum adsorption capacity of 246.65 mg·g-1. FJMS-KCGTS overcomes the hindrance of Cs+ adsorption by competing ions and realizes highly selective capture of Cs+ in complex environments. It shows successful cleanup for actual 137Cs-liquid-wastes generated during industrial production with removal rates of over 99%. Ion-exchange column filled with FJMS-KCGTS can efficiently treat 540 mL Cs+-containing solutions (31.995 mg·L-1) and generates only 0.12 mL of solid waste, which enables waste solution volume reduction. Single-crystal structural analysis and density functional theory calculations are used to visualize the "ion-imprinting" process and confirm that the "imprinting effect" originates from the spatially confined effect of the framework. This work clearly reveals radiocesium capture mechanism and structure-function relationships that could inspire the development of efficient inorganic adsorbents for selective recognition and separation of key radionuclides.

3.
Sci Total Environ ; 933: 173062, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38723959

ABSTRACT

Sewage treatment as a high energy consumption industry, its electricity consumption accounts for 3 % of the total electricity consumption of society. That means significant greenhouse gas emissions. In the context of China's goal of "reaching carbon peak by 2030 and achieving carbon neutrality by 2060", reducing the energy consumption of wastewater treatment systems has emerged as an important issue in recent years. In this paper, the GPS-X simulation software was employed to conduct a simulation study of a modified Anoxic-Aerobic-Oxic wastewater treatment plant (WWTP) in Wuhan, and the response surface methodology (RSM) was utilized to ascertain the interactive effects of DO, IRF, ERR, and SD on the effluent quality, thereby identifying the operational parameters that minimize energy consumption while maintaining satisfactory effluent quality. Additionally, the PVsyst software was employed to design the solar power generation system of the WWTP and analyze its power generation potential. On this basis, through the coupling of photovoltaic power, electricity load, time-of-use pricing, and the water quality simulation model, and taking the WWTP data in September as a case study, the electricity usage strategies under various illumination conditions were formulated. The aim is to maximize the use of photovoltaic power to reduce the cost and carbon emissions of the WWTP. The results show that the optimal combination of operational parameters, including an external reflux ratio of 0.3, the internal recycle flow of 50,000 m3/d, and the sludge discharge of 448 m3/d, resulted in a reduction in power of 208.5 kW, and after the combination optimization of operational parameters and electricity utilization, the operation cost of the WWTP in September was reduced by 40 % âˆ¼ 60 %, and the carbon emission attributable to electricity was reduced by 30 % âˆ¼ 50 %.

4.
J Endod ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763483

ABSTRACT

INTRODUCTION: Often there is the need of moving endodontically treated teeth. Orthodontic movement may have no effect on the prognosis of teeth with root canal treatment (RCT). To verify this subject, we evaluated the effect of orthodontic movement on the prognosis of RCT teeth using cone-beam computed tomography (CBCT) and further explored the influence of orthodontic movement on the prognosis of RCT teeth with and without apical periodontitis (AP). METHODS: This retrospective study was conducted by evaluating 169 RCT teeth of 100 patients who had undergone fixed orthodontic treatment. AP was assessed and classified using the CBCT periapical index. Univariate analysis of RCT outcome was performed for the total RCT group, RCT without AP group and RCT with AP group. Multivariate logistic regression was performed for the total RCT group and RCT without AP group, respectively, but not for the RCT with AP group. Variables related to the prognosis of RCT were included, such as age, gender, tooth position, RCT quality, coronal restoration quality, periodontal condition, orthodontic traction distance, and orthodontic rotation angle. RESULTS: The orthodontic traction distance and rotation angle were not significantly correlated to the RCT outcomes, regardless of the presence of AP. Among the total RCT group, teeth with unqualified RCT (odds ratio = 3.42, P = .004) and inadequate coronal restoration (odds ratio = 4.40, P = .031) had a lower success rate. Of the 97 RCT teeth without AP, unqualified RCT was a risk factor for treatment failure (odds ratio = 3.55, P = .041). Of the 72 RCT teeth with AP, the univariate analysis showed that RCT quality were significantly related to the outcome (P = .042). CONCLUSIONS: Orthodontic movement had no effect on the prognosis of RCT teeth regardless of the presence of AP.

5.
Phytochem Anal ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639052

ABSTRACT

INTRODUCTION: Smilacis Glabrae Rhizoma (SGR) is rich in chemical constituents with a variety of pharmacological activities. However, in-depth research has yet to be conducted on the chemical and pharmacodynamic constituents of SGR. MATERIALS AND METHODS: In this study, the chemical constituents of SGR were analyzed using liquid chromatography-mass spectrometry, and the pharmacodynamic compounds responsible for the medicinal effects of SGR were elucidated through a literature review. RESULTS: In total, 20 potentially new compounds, including 16 flavonoids (C19, C20, and C27-C40) and four phenylpropanoids (C107, C112, C113, and C118), together with 161 known ones were identified in the ethanol extract of SGR using liquid chromatography-mass spectrometry, and 25 of them were unequivocally identified by comparison with reference compounds. Moreover, 17 known constituents of them were identified in the plants of genus Smilax for the first time, and 16 were identified in the plant Smilax glabra Roxb. for the first time. Of 161 known compounds, 84 constituents (including isomers) have been reported to have 17 types of pharmacological activities, covering all known pharmacological activities of SGR; among these 84 bioactive constituents, six were found in the plants of genus Smilax for the first time and five were found in S. glabra for the first time, which are new bioactive constituents found in the plants of genus Smilax and the plant S. glabra, respectively. CONCLUSION: The results provide further information on the chemical composition of SGR, laying the foundation for the elucidation of the pharmacodynamic substances of SGR.

6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1641-1660, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621949

ABSTRACT

This study explored the existence forms(original constituents and metabolites) of Tiantian Capsules, Aloe, and Tiantian Capsules without Aloe in rats for the first time, aiming to clarify the contribution of Aloe to the existence form of Tiantian Capsules. Rats were administrated with corresponding drugs by gavage once a day for seven consecutive days. All urine and feces samples were collected during the seven days of administration, and blood samples were collected 0.5, 1, and 1.5 h after the last administration. UHPLC-Q-TOF-MS was employed to detect and identify the original constituents and metabolites in the samples. A total of 34, 28, and 2 original constituents and 64, 94, and 0 metabolites were identified in the samples of rats administrated with Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe, respectively. The main metabolic reactions were methylation, hydrogenation, hydroxylation, dehydroxylation, glucuronidation, and sulfation. This study clarified for the first time the existence forms and partial metabolic pathways of Aloe, Tiantian Capsules, and Tiantian Capsules without Aloe in rats, laying a foundation for revealing their effective forms. The findings are of great significance to the research on the functioning mechanism and quality control of Aloe and Tiantian Capsules.


Subject(s)
Aloe , Drugs, Chinese Herbal , Rats , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/metabolism , Administration, Oral , Feces , Capsules
7.
Oncol Res ; 32(5): 983-998, 2024.
Article in English | MEDLINE | ID: mdl-38686044

ABSTRACT

Numerous studies have characterized the critical role of circular RNAs (circRNAs) as regulatory factors in the progression of multiple cancers. However, the biological functions of circRNAs and their underlying molecular mechanisms in the progression of uveal melanoma (UM) remain enigmatic. In this study, we identified a novel circRNA, circ_0053943, through re-analysis of UM microarray data and quantitative RT-PCR. Circ_0053943 was found to be upregulated in UM and to promote the proliferation and metastatic ability of UM cells in both in vitro and in vivo settings. Mechanistically, circ_0053943 was observed to bind to the KH1 and KH2 domains of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), thereby enhancing the function of IGF2BP3 by stabilizing its target mRNA. RNA sequencing assays identified epidermal growth factor receptor (EGFR) as a target gene of circ_0053943 and IGF2BP3 at the transcriptional level. Rescue assays demonstrated that circ_0053943 exerts its biological function by stabilizing EGFR mRNA and regulating the downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. Collectively, circ_0053943 may promote UM progression by stabilizing EGFR mRNA and activating the MAPK/ERK signaling pathway through the formation of a circ_0053943/IGF2BP3/EGFR RNA-protein ternary complex, thus providing a potential biomarker and therapeutic target for UM.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Disease Progression , ErbB Receptors , Melanoma , RNA, Circular , RNA-Binding Proteins , Uveal Neoplasms , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Adenosine/metabolism , Adenosine/genetics , Mice , Animals , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
8.
Cancer Med ; 13(8): e7215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659392

ABSTRACT

OBJECTIVES: The recommended treatment for limited-stage small-cell lung cancer (LS-SCLC) is a combination of thoracic radiotherapy (TRT) and etoposide plus cisplatin (EP) chemotherapy, typically administered over 4-6 cycles. Nonetheless, the optimal duration of chemotherapy is still not determined. This study aimed to compare the outcomes of patients with LS-SCLC who received either 6 cycles or 4-5 cycles of EP chemotherapy combined with TRT. MATERIALS AND METHODS: In this retrospective analysis, we utilized data from our prior prospective trial to analyze the outcomes of 265 LS-SCLC patients who received 4-6 courses of EP combined with concurrent accelerated hyperfractionated TRT between 2002 and 2017. Patients were categorized into two groups depending on their number of chemotherapy cycles: 6 or 4-5 cycles. To assess overall survival (OS) and progression-free survival (PFS), we employed the Kaplan-Meier method after conducting propensity score matching (PSM). RESULTS: Among the 265 LS-SCLC patients, 60 (22.6%) received 6 cycles of EP chemotherapy, while 205 (77.4%) underwent 4-5 cycles. Following PSM (53 patients for each group), the patients in the 6 cycles group exhibited a significant improvement in OS and PFS in comparison to those in the 4-5 cycles group [median OS: 29.8 months (95% confidence interval [CI], 23.6-53.1 months) vs. 22.7 months (95% CI, 20.8-29.1 months), respectively, p = 0.019; median PFS: 17.9 months (95% CI, 13.7-30.5 months) vs. 12.0 months (95% CI, 9.8-14.2 months), respectively, p = 0.006]. The two-year and five-year OS rates were 60.38% and 29.87% in the 6 cycles group, whereas 47.17% and 15.72% in the 4-5 cycles group, respectively. CONCLUSION: Patients diagnosed with LS-SCLC who were treated with EP regimen chemotherapy combined with TRT exhibited notably enhanced survival when administered 6 cycles of chemotherapy, as compared to those who underwent only 4-5 cycles.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Chemoradiotherapy , Cisplatin , Etoposide , Lung Neoplasms , Propensity Score , Small Cell Lung Carcinoma , Humans , Male , Female , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Etoposide/administration & dosage , Etoposide/therapeutic use , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Aged , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Chemoradiotherapy/methods , Retrospective Studies , Prospective Studies , Neoplasm Staging , Adult , Progression-Free Survival , Drug Administration Schedule
9.
Front Oncol ; 14: 1347896, 2024.
Article in English | MEDLINE | ID: mdl-38549923

ABSTRACT

Background: Tislelizumab, a humanized IgG4 anti-PD-1 monoclonal antibody has been approved in China and Europe. According to the published clinical research, tislelizumab shows satisfactory safety profile. No severe hepatotoxicity or acute kidney injury were reported. Case presentation: We presented a case study of a 74-year-old man who developed acute kidney injury (grade 3) and acute liver injury (grade 4) after being administered tislelizumab for the treatment of esophageal squamous cell carcinoma. We reviewed the patient's history, physical examination, and laboratory findings and provided comprehensive differentials of the possible causes of the toxicities. Immune Checkpoint Inhibitors (ICI) hepatotoxicity and nephrotoxicity were confirmed clinically. We also discussed the management of toxicities associated with ICIs and the need for a multidisciplinary approach to care. Conclusions: The case highlights the importance of close monitoring and prompt management of toxicities associated with ICIs and the need for further research to better understand the risk factors for these toxicities and to identify effective treatments for them.

10.
Materials (Basel) ; 17(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38473687

ABSTRACT

Solid oxide electrolysis cell (SOEC) industrialization has been developing for many years. Commercial materials such as 8 mol% Y2O3-stabilized zirconia (YSZ), Gd0.1Ce0.9O1.95 (GDC), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), La0.6Sr0.4CoO3-δ (LSC), etc., have been used for many years, but the problem of mismatched thermal expansion coefficients of various materials between cells has not been fundamentally solved, which affects the lifetime of SOECs and restricts their industry development. Currently, various solutions have been reported, such as element doping, manufacturing defects, and introducing negative thermal expansion coefficient materials. To promote the development of the SOEC industry, a direct treatment method for commercial materials-quenching and doping-is reported to achieve the controllable preparation of the thermal expansion coefficient of commercial materials. The quenching process only involves the micro-treatment of raw materials and does not have any negative impact on preparation processes such as powder slurry and sintering. It is a simple, low-cost, and universal research strategy to achieve the controllable preparation of the thermal expansion coefficient of the commercial material La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) through a quenching process by doping elements and increasing oxygen vacancies in the material. Commercial LSCF materials are heated to 800 °C in a muffle furnace, quickly removed, and cooled and quenched in 3.4 mol/L of prepared Y(NO3)3. The thermal expansion coefficient of the treated material can be reduced to 13.6 × 10-6 K-1, and the blank sample is 14.1 × 10-6 K-1. In the future, it may be possible to use the quenching process to select appropriate doping elements in order to achieve similar thermal expansion coefficients in SOECs.

11.
J Hazard Mater ; 467: 133695, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38341895

ABSTRACT

As a growing concern in aqueous systems, micro- and nano-plastics, especially nanoplastics (NPs), have been widely detected in the environment and organisms, posing a potential threat to ecosystems and human health. Hydrophobic deep eutectic solvents (HDESs) have emerged as environmentally friendly solvents that have shown promise for extracting pollutants from water, either for detection or removal purposes. Herein, we investigated the extraction of polystyrene (PS) and polyethylene terephthalate (PET) NPs from aqueous solution using lignin based HDESs as sustainable solvents. Rapid extraction of both PET and PS NPs was observed with the high extraction efficiency achieved (> 95%). The extraction capacities for PET and PS could reach up to 525.877 mg/mL and 183.520 mg/mL, respectively, by the Thymol-2,6-dimethoxyphenol 1:2 HDES. Moreover, the extraction mechanism was studied using various techniques including Fourier-transform infrared analysis, contact angle measurements, molecular dynamics simulation, kinetics, and isotherm studies. This work lays a foundational basis for the future development of innovative HDES-based technologies in the detection and remediation of NPs as part of the grand challenge of plastic pollution.

12.
Cancer Immunol Immunother ; 73(3): 55, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366287

ABSTRACT

BACKGROUND: For patients with unresectable locally advanced esophageal squamous cell carcinoma (ESCC), concurrent chemoradiotherapy (CCRT) is the current standard treatment; however, the prognosis remains poor. Immunotherapy combined with chemotherapy has demonstrated improved survival outcomes in advanced ESCC. Nevertheless, there is a lack of reports on the role of induction immunotherapy plus chemotherapy prior to CCRT for unresectable locally advanced ESCC. Therefore, this study aimed to evaluate the efficacy and safety of induction immunotherapy plus chemotherapy followed by definitive chemoradiotherapy in patients with unresectable locally advanced ESCC. METHODS: This study retrospectively collected clinical data of patients diagnosed with locally advanced ESCC who were treated with radical CCRT between 2017 and 2021 at our institution. The patients were divided into two groups: an induction immunotherapy plus chemotherapy group (induction IC group) or a CCRT group. To assess progression-free survival (PFS) and overall survival (OS), we employed the Kaplan-Meier method after conducting propensity score matching (PSM). RESULTS: A total of 132 patients with unresectable locally advanced ESCC were included in this study, with 61 (45.26%) patients in the induction IC group and 71 (54.74%) patients in the CCRT group. With a median follow-up of 37.0 months, median PFS and OS were 25.2 and 39.2 months, respectively. The patients in the induction IC group exhibited a significant improvement in PFS and OS in comparison with those in the CCRT group (median PFS: not reached [NR] versus 15.9 months, hazard ratio [HR] 0.526 [95%CI 0.325-0.851], P = 0.0077; median OS: NR versus 25.2 months, HR 0.412 [95%CI 0.236-0.719], P = 0.0012). After PSM (50 pairs), both PFS and OS remained superior in the induction IC group compared to the CCRT group (HR 0.490 [95%CI 0.280-0.858], P = 0.011; HR 0.454 [95%CI 0.246-0.837], P = 0.0093), with 2-year PFS rates of 67.6 and 42.0%, and the 2-year OS rates of 74.6 and 52.0%, respectively. Multivariate analysis revealed that lower tumor stage, concurrent chemotherapy using double agents, and induction immunotherapy plus chemotherapy before CCRT were associated with better prognosis. CONCLUSIONS: Our results showed for the first time that induction immunotherapy plus chemotherapy followed by CCRT for unresectable locally advanced ESCC provided a survival benefit with manageable safety profile. More prospective clinical studies should be warranted.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/therapy , Esophageal Neoplasms/pathology , Retrospective Studies , Prospective Studies , Propensity Score , Chemoradiotherapy/methods , Immunotherapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
13.
J Atheroscler Thromb ; 31(6): 876-903, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38220186

ABSTRACT

AIM: To evaluate the efficacy, safety, and pharmacokinetics (PK) of inclisiran in Japanese patients with high cardiovascular risk and elevated low-density lipoprotein cholesterol (LDL-C). METHODS: ORION-15 was a phase 2, double-blind, placebo-controlled randomized trial. Patients with hypercholesterolemia, including heterozygous familial hypercholesterolemia (HeFH), were randomized to inclisiran sodium 100, 200, or 300 mg, or placebo and dosed subcutaneously on Days 1, 90, and 270. The primary endpoint was the percentage change from baseline to Day 180 to demonstrate the superiority of inclisiran vs. placebo. Patients who consented to the PK substudy had additional study procedures for blood collection and safety assessment. RESULTS: Overall, 312 patients (mean age, 63.6 years; male, 74.4%; baseline LDL-C, 114.0 mg/dL) were randomized. Baseline characteristics were well balanced among the groups. At Day 180, inclisiran at all doses demonstrated significant LDL-C and proprotein convertase subtilisin/kexin type 9 (PCSK9) reductions (p<0.0001 for both), which showed a dose-response relationship. The greatest reductions (LDL-C, 65.3%; PCSK9, 79.2%) were with inclisiran sodium 300 mg. At Day 180, >86% of the patients receiving inclisiran achieved the Japan Atherosclerosis Society 2017 lipid management targets compared to 8.9% for placebo. The mean (SD) plasma half-life for inclisiran was 6.8 (2.0)-7.6 (0.8) h. The incidence of adverse events with inclisiran was similar to that with placebo. CONCLUSION: Inclisiran sodium 100, 200, and 300 mg demonstrated clinically meaningful and statistically significant LDL-C and PCSK9 reductions at Day 180, which were consistent over 12 months. Inclisiran was effective and well tolerated in Japanese patients with hypercholesterolemia, including HeFH.


Subject(s)
Cholesterol, LDL , Hypercholesterolemia , Humans , Male , Middle Aged , Female , Double-Blind Method , Cholesterol, LDL/blood , Japan/epidemiology , Hypercholesterolemia/drug therapy , Aged , Hyperlipoproteinemia Type II/drug therapy , Treatment Outcome , East Asian People , Proprotein Convertase 9 , RNA, Small Interfering
14.
Sci Total Environ ; 917: 170541, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38290684

ABSTRACT

Microplastics (MPs) can co-occur widely with heavy metals in soil. This study intended to investigate the influences of the co-exposure of polyethylene MPs (0.5 %, w/w) and cadmium (Cd) in black soil on the Cd distribution, enzyme activities, and bacterial communities in both bulk soil and different sized soil aggregates (> 1, 0.50-1, 0.25-0.50, and < 0.25 mm aggregates) after a 90-day incubation. Our results showed that the existence of MPs increased the distributions of Cd in >1 mm and < 0.25 mm soil aggregates and decreased its distributions in 0.50-1 mm and 0.25-0.50 mm soil aggregates. About 12.15 %-17.65 % and 9.03 %-11.13 % of Cd were distributed in the exchangeable and oxidizable forms in bulk soil and various sized soil aggregates after the addition of MPs which were higher than those in the only Cd-treated soil (11.17 %-14.72 % and 8.66 %-10.43 %, respectively), while opposite tendency was found for Cd in the reducible form. Urease and ß-glucosidase activities in the Cd-treated soils were 1.14-1.18 and 1.07-1.31 times higher than those in the Cd-MPs treated soils. MPs disturbed soil bacterial community at phylum level and increased the bacteria richness in bulk soil. The levels of predicted functional genes which are linked to the biodegradation and metabolism of exogenous substances and soil C and N cycles were altered by the co-exposure of Cd and MPs. The findings of this study could help deepen our knowledge about the responses of soil properties, especially microbial community, to the co-occurrence of MPs and heavy metals in soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Microplastics , Cadmium/analysis , Plastics , Soil , Polypropylenes , Soil Pollutants/analysis , Bacteria
15.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276737

ABSTRACT

Sodium- (Na+) and potassium- (K+) ion batteries are cost-effective alternatives to lithium-ion (Li+) batteries due to the abundant sodium and potassium resources. Solid polymer electrolytes (SPEs) are essential for safer and more efficient Na+ and K+ batteries because they often exhibit low ionic conductivity at room temperature. While zwitterionic (ZW) materials enhance Li+ battery conductivity, their potential for Na+ and K+ transport in batteries remains unexplored. In this study, we investigated the effect of three ZW molecules (ChoPO4, i.e., 2-methacryloyloxyethyl phosphorylcholine, ImSO3, i.e., sulfobetaine ethylimidazole, and ImCO2, i.e., carboxybetaine ethylimidazole) on the dissociation of Na+ and K+ coordination with ethylene oxide (EO) chains in EO-based electrolytes through molecular dynamics simulations. Our results showed that ChoPO4 possessed the highest cation-EO10 dissociation ability, while ImSO3 exhibited the lowest. Such dissociation ability correlated with the cation-ZW molecule coordination strength: ChoPO4 and ImSO3 showed the strongest and the weakest coordination with cations. However, the cation-ZW molecule coordination could slow the cationic diffusion. The competition of these effects resulted in accelerating or decelerating cationic diffusion. Our simulated results showed that ImCO2 enhanced Na+ diffusion by 20%, while ChoPO4 and ImSO3 led to a 10% reduction. For K+, ChoPO4 reduced its diffusion by 40%, while ImCO2 and ImSO3 caused a similar decrease of 15%. These findings suggest that the ZW structure and the cationic size play an important role in the ionic dissociation effect of ZW materials.

16.
Small ; : e2309331, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38213019

ABSTRACT

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

17.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-37609352

ABSTRACT

Large protein language models (PLMs) present excellent potential to reshape protein research by encoding the amino acid sequences into mathematical and biological meaningful embeddings. However, the lack of crucial 3D structure information in most PLMs restricts the prediction capacity of PLMs in various applications, especially those heavily depending on 3D structures. To address this issue, we introduce S-PLM, a 3D structure-aware PLM utilizing multi-view contrastive learning to align the sequence and 3D structure of a protein in a coordinate space. S-PLM applies Swin-Transformer on AlphaFold-predicted protein structures to embed the structural information and fuses it into sequence-based embedding from ESM2. Additionally, we provide a library of lightweight tuning tools to adapt S-PLM for diverse protein property prediction tasks. Our results demonstrate S-PLM's superior performance over sequence-only PLMs, achieving competitiveness in protein function prediction compared to state-of-the-art methods employing both sequence and structure inputs.

18.
Eur Radiol ; 34(3): 1471-1480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37665390

ABSTRACT

OBJECTIVES: To explore the potential of dynamic contrast-enhanced MRI (DCE-MRI) quantitative parameters in predicting severe acute radiation-induced rectal injury (RRI) in rectal cancer. METHODS: This retrospective study enrolled 49 patients with rectal cancer who underwent neoadjuvant chemoradiotherapy and rectal MRI including a DCE-MRI sequence from November 2014 to March 2021. Two radiologists independently measured DCE-MRI quantitative parameters, including the forward volume transfer constant (Ktrans), rate constant (kep), fractional extravascular extracellular space volume (ve), and the thickness of the rectal wall farthest away from the tumor. These parameters were compared between mild and severe acute RRI groups based on histopathological assessment. Receiver operating characteristic curve analysis was performed to analyze statistically significant parameters. RESULTS: Forty-nine patients (mean age, 54 years ± 12 [standard deviation]; 37 men) were enrolled, including 25 patients with severe acute RRI. Ktrans was lower in severe acute RRI group than mild acute RRI group (0.032 min-1 vs 0.054 min-1; p = 0.008), but difference of other parameters (kep, ve and rectal wall thickness) was not significant between these two groups (all p > 0.05). The area under the receiver operating characteristic curve of Ktrans was 0.72 (95% confidence interval: 0.57, 0.84). With a Ktrans cutoff value of 0.047 min-1, the sensitivity and specificity for severe acute RRI prediction were 80% and 54%, respectively. CONCLUSION: Ktrans demonstrated moderate diagnostic performance in predicting severe acute RRI. CLINICAL RELEVANCE STATEMENT: Dynamic contrast-enhanced MRI can provide non-invasive and objective evidence for perioperative management and treatment strategies in rectal cancer patients with acute radiation-induced rectal injury. KEY POINTS: • To our knowledge, this study is the first to evaluate the predictive value of contrast-enhanced MRI (DCE-MRI) quantitative parameters for severe acute radiation-induced rectal injury (RRI) in patients with rectal cancer. • Forward volume transfer constant (Ktrans), derived from DCE-MRI, exhibited moderate diagnostic performance (AUC = 0.72) in predicting severe acute RRI of rectal cancer, with a sensitivity of 80% and specificity of 54%. • DCE-MRI is a promising imaging marker for distinguishing the severity of acute RRI in patients with rectal cancer.


Subject(s)
Contrast Media , Rectal Neoplasms , Male , Humans , Middle Aged , Retrospective Studies , Rectum/diagnostic imaging , Magnetic Resonance Imaging/methods , Rectal Neoplasms/diagnostic imaging
19.
J Nanobiotechnology ; 21(1): 488, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105218

ABSTRACT

BACKGROUND: Lung cancer is a highly prevalent malignancy and has the highest mortality rate among all tumors due to lymph node metastasis. Bone marrow and umbilical cord-derived mesenchymal stem cells (MSCs) have demonstrated tumor-suppressive effects on lung cancer. This study investigated the effects of DPSC lysate on proliferation, apoptosis, migration and invasion of cancer cells were studied in vivo and in vitro. METHODS: The proliferation, apoptosis, and migration/metastasis were evaluated by cell counting kit-8 assay, Annexin-V and propidium iodide staining, and the transwell assay, respectively. The expression levels of apoptosis-, cell cycle-, migration-, and adhesion-related mRNA and proteins were measured by qRT-PCR and western blot. The level and mRNA expression of tumor markers carcino embryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma (SCC) were measured by Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. Finally, a tumor-bearing mouse model was constructed to observe the tumor-suppressive effect of DPSC lysate after intraperitoneal injection. RESULTS: DPSC lysate decreased the viability of A549 cells and induced apoptosis in lung cancer cells. Western blot confirmed that levels of Caspase-3, Bax, and Bad were increased, and Bcl-2 protein levels were decreased in A549 cells treated with DPSC lysate. In addition, DPSC lysate inhibited the migration and invasion of A549 cells; downregulated key genes of the cell cycle, migration, and adhesion; and significantly suppressed tumor markers. Xenograft results showed that DPSC lysate inhibited tumor growth and reduced tumor weight. CONCLUSIONS: DPSC lysate inhibited proliferation, invasion, and metastasis; promoted apoptosis in lung cancer cells; and suppressed tumor growth- potentially providing a cell-based alternative therapy for lung cancer treatment.


Subject(s)
Lung Neoplasms , Mesenchymal Stem Cells , Humans , Mice , Animals , Lung Neoplasms/pathology , Dental Pulp/metabolism , Dental Pulp/pathology , Cell Proliferation , Mesenchymal Stem Cells/metabolism , RNA, Messenger/pharmacology , Biomarkers, Tumor , Apoptosis , Cell Movement , Cell Line, Tumor
20.
J Immunother Cancer ; 11(11)2023 11 24.
Article in English | MEDLINE | ID: mdl-38007239

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent and durable effects in B-cell malignancies. However, antigen loss or downregulation is a frequent cause of resistance. Here, we report development of a novel CAR T-cell therapy product to target CD79b, a pan B-cell antigen, widely expressed in most B-cell lymphomas. METHODS: We generated a novel anti-CD79b monoclonal antibody by hybridoma method. The specificity of the antibody was determined by testing against isogenic cell lines with human CD79b knock-in or knock-out. A single-chain variable fragment derived from the monoclonal antibody was used to make a panel of CD79b-targeting CAR molecules containing various hinge, transmembrane, and co-stimulatory domains. These were lentivirally transduced into primary T cells and tested for antitumor activity in in vitro and in vivo B-cell lymphoma models. RESULTS: We found that the novel anti-CD79b monoclonal antibody was highly specific and bound only to human CD79b and no other cell surface protein. In testing the various CD79b-targeting CAR molecules, superior antitumor efficacy in vitro and in vivo was found for a CAR consisting CD8α hinge and transmembrane domains, an OX40 co-stimulatory domain, and a CD3ζ signaling domain. This CD79b CAR specifically recognized human CD79b-expressing lymphoma cell lines but not CD79b knock-out cell lines. CD79b CAR T cells, generated from T cells from either healthy donors or patients with lymphoma, proliferated, produced cytokines, degranulated, and exhibited robust cytotoxic activity in vitro against CD19+ and CD19- lymphoma cell lines and patient-derived lymphoma tumors relapsing after prior CD19 CAR T-cell therapy. Furthermore, CD79b CAR T cells were highly efficient at eradicating pre-established lymphoma tumors in vivo in three aggressive lymphoma xenograft models, including two cell line-derived xenografts and one patient-derived xenograft. Notably, these CAR T cells did not demonstrate any significant tonic signaling activity or markers of exhaustion. CONCLUSION: Our results indicated that this novel CD79b CAR T-cell therapy product has robust antitumor activity against B-cell lymphomas. These results supported initiation of a phase 1 clinical trial to evaluate this product in patients with relapsed or refractory B-cell lymphomas.


Subject(s)
Lymphoma, B-Cell , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local/drug therapy , Lymphoma, B-Cell/drug therapy , T-Lymphocytes , Antibodies, Monoclonal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...