Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 5): 126995, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37802432

ABSTRACT

Starch is a highly attractive carbohydrate in the production for the preparation of adhesives in recent years, due to its widespread availability, renewability, and abundance of reactive hydroxyl groups. However, the mechanical properties, hydrophobicity, self-adhesion, and particularly high energy efficiency are generally unsatisfactory for current starch-based adhesives. On this premise, starch was oxidized using Fenton's reagent in a ""one-pot cooking" process. The prepared oxidized starch was chain expanded by polyvinyl alcohol (PVA) and then cross-linked with a 10 % isocyanate (PM-200) to fabricate a starch-based adhesive (SFA) with a network crosslinked structure. SF12A35%/2.5-55 adhesive shows significantly higher wet shear strength (1.18 MPa), a remarkable 94 % increase compared to SF0A35%/2.5-55. The adhesive film also demonstrates both hydrophobicity (99° contact angle) and exceptional energy efficiency, with a DSC test revealing a notable 10 % elevation in energy efficiency. In addition, the crosslinked structure increases its molecular weight, thereby increasing its self-adhesion (Fig. S1). This study opens up new possibilities for the design and manufacture of multifunctional starch-based adhesives.


Subject(s)
Adhesives , Starch , Adhesives/chemistry , Oxidation-Reduction , Starch/chemistry , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...