Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(8): 3985-3996, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38357760

ABSTRACT

Achieving no or low polychlorinated byproduct selectivity is essential for the chlorinated volatile organic compounds (CVOCs) degradation, and the positive roles of water vapor may contribute to this goal. Herein, the oxidation behaviors of chlorobenzene over typical Mn-based catalysts (MnO2 and acid-modified MnO2) under dry and humid conditions were fully explored. The results showed that the presence of water vapor significantly facilitates the deep mineralization of chlorobenzene and restrains the formation of Cl2 and dichlorobenzene. This remarkable water vapor-promoting effect was conferred by the MnO2 substrate, which could suitably synergize with the postconstructed acidic sites, leading to good activity, stability, and desirable product distribution of acid-modified MnO2 catalysts under humid conditions. A series of experiments including isotope-traced (D2O and H218O) CB-TPO provided complete insights into the direct involvement of water molecules in chlorobenzene oxidation reaction and attributed the root cause of the water vapor-promoting effect to the proton-rich environment and highly reactive water-source oxygen species rather than to the commonly assumed cleaning effect or hydrogen proton transfer processes (generation of active OOH). This work demonstrates the application potential of Mn-based catalysts in CVOCs elimination under practical application conditions (containing water vapor) and provides the guidance for the development of superior industrial catalysts.


Subject(s)
Oxides , Steam , Catalysis , Chlorobenzenes/chemistry , Manganese Compounds , Oxides/chemistry , Protons
2.
Chemistry ; 28(59): e202202122, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35851509

ABSTRACT

Solar-driven selective oxygen reduction reaction on polymeric carbon nitride framework is one of the most promising approaches toward sustainable H2 O2 production. Potassium poly(heptazine imide) (PHI), with regular metal sites in the framework and favorable crystalline structure, is highly active for photocatalytic selective 2e oxygen reduction to produce H2 O2 . By introducing NH4 Cl into the eutectic KCl-LiCl salt mixture, the PHI framework exhibits a remarkable performance for photocatalytic production of H2 O2 , for example, a record high H2 O2 photo-production rate of 29.5 µmol h-1  mg-1 . The efficient photocatalytic performance is attributed to the favorable properties of the new PHI framework, such as improved porosity, negatively shifted LUMO position, enhanced exciton dissociation and charges migration properties. A mechanistic investigation by quenching and electron spin resonance technique reveals the critical role of superoxide radicals for the formation singlet oxygen, and the singlet oxygen is one of the critical intermediates towards the formation of the H2 O2 by proton extraction from the ethanol.

3.
RSC Adv ; 12(9): 5236-5244, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35425551

ABSTRACT

Nano-confinement systems offer various extraordinary chemical/physical properties, due to the spatial restriction and the electronic interaction between the confined species and the surrounding medium. They are, therefore, providing rich opportunities for the design of efficient catalytic reaction systems for pollutant removal. Herein, a highly efficient mediated-electron transfer pathway is identified on a spatially-confined zero valent cobalt for abatement of the organic pollutants by PMS. The catalyst showed efficient catalytic performance in both batch and a flow reactor for degradation of various pollutants, e.g., a degradation reaction constant of 0.052 s-1 for sulfamethoxazole and 0.041 s-1 for BPA. Regulated by the spatial-confinement, a distinctive inverse relationship between PMS decomposition rate and the electron density of the pollutant molecule was experimentally substantiated, e.g., in the presence of the electron-rich sulfamethoxazole, PMS decomposed slower than that with BPA, while in the presence of electron deficient diphenhydramine, PMS decomposed faster than that with BPA. The unique reaction mechanism endows the spatially-confined cobalt with the capability of eliminating the priority pollutants in the complex water matrix with pervasive halide ions and natural organic matter (NOM) via PMS activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...