Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Epidemiol ; 15: 1241-1252, 2023.
Article in English | MEDLINE | ID: mdl-38146486

ABSTRACT

Purpose: To describe and categorize detailed components of databases in the Neurological and Mental Health Global Epidemiology Network (NeuroGEN). Methods: An online 132-item questionnaire was sent to key researchers and data custodians of NeuroGEN in North America, Europe, Asia and Oceania. From the responses, we assessed data characteristics including population coverage, data follow-up, clinical information, validity of diagnoses, medication use and data latency. We also evaluated the possibility of conversion into a common data model (CDM) to implement a federated network approach. Moreover, we used radar charts to visualize the data capacity assessments, based on different perspectives. Results: The results indicated that the 15 databases covered approximately 320 million individuals, included in 7 nationwide claims databases from Australia, Finland, South Korea, Taiwan and the US, 6 population-based electronic health record databases from Hong Kong, Scotland, Taiwan, the Netherlands and the UK, and 2 biomedical databases from Taiwan and the UK. Conclusion: The 15 databases showed good potential for a federated network approach using a common data model. Our study provided publicly accessible information on these databases for those seeking to employ real-world data to facilitate current assessment and future development of treatments for neurological and mental disorders.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37833996

ABSTRACT

The extensive use of fossil fuels and global climate change have raised ever-increasing attention to sustainable development, global food security and the replacement of fossil fuels by renewable energy. Several C4 monocot grasses have excellent photosynthetic ability, stress tolerance and may rapidly produce biomass in marginal lands with low agronomic inputs, thus representing an important source of bioenergy. Among these grasses, Sorghum bicolor has been recognized as not only a promising bioenergy crop but also a research model due to its diploidy, simple genome, genetic diversity and clear orthologous relationship with other grass genomes, allowing sorghum research to be easily translated to other grasses. Although sorghum molecular genetic studies have lagged far behind those of major crops (e.g., rice and maize), recent advances have been made in a number of biomass-related traits to dissect the genetic loci and candidate genes, and to discover the functions of key genes. However, molecular and/or targeted breeding toward biomass-related traits in sorghum have not fully benefited from these pieces of genetic knowledge. Thus, to facilitate the breeding and bioenergy applications of sorghum, this perspective summarizes the bioenergy applications of different types of sorghum and outlines the genetic control of the biomass-related traits, ranging from flowering/maturity, plant height, internode morphological traits and metabolic compositions. In particular, we describe the dynamic changes of carbohydrate metabolism in sorghum internodes and highlight the molecular regulators involved in the different stages of internode carbohydrate metabolism, which affects the bioenergy utilization of sorghum biomass. We argue the way forward is to further enhance our understanding of the genetic mechanisms of these biomass-related traits with new technologies, which will lead to future directions toward tailored designing sorghum biomass traits suitable for different bioenergy applications.


Subject(s)
Sorghum , Sorghum/genetics , Sorghum/metabolism , Biomass , Plant Breeding , Poaceae/genetics , Poaceae/metabolism , Edible Grain , Fossil Fuels
3.
Anat Sci Educ ; 16(5): 858-869, 2023.
Article in English | MEDLINE | ID: mdl-36905326

ABSTRACT

Understanding the three-dimensional (3D) structure of the human skull is imperative for medical courses. However, medical students are overwhelmed by the spatial complexity of the skull. Separated polyvinyl chloride (PVC) bone models have advantages as learning tools, but they are fragile and expensive. This study aimed to reconstruct 3D-printed skull bone models (3D-PSBs) using polylactic acid (PLA) with anatomical characteristics for spatial recognition of the skull. Student responses to 3D-PSB application were investigated through a questionnaire and tests to understand the requirement of these models as a learning tool. The students were randomly divided into 3D-PSB (n = 63) and skull (n = 67) groups to analyze pre- and post-test scores. Their knowledge was improved, with the gain scores of the 3D-PSB group (50.0 ± 3.0) higher than that of the skull group (37.3 ± 5.2). Most students agreed that using 3D-PSBs with quick response codes could improve immediate feedback on teaching (88%; 4.41 ± 0.75), while 85.9% of the students agreed that individual 3D-PSBs clarified the structures hidden within the skull (4.41 ± 0.75). The ball drop test revealed that the mechanical strength of the cement/PLA model was significantly greater than that of the cement or PLA model. The prices of the PVC, cement, and cement/PLA models were 234, 1.9, and 10 times higher than that of the 3D-PSB model, respectively. These findings imply that low-cost 3D-PSB models could revolutionize skull anatomical education by incorporating digital technologies like the QR system into the anatomical teaching repertoire.


Subject(s)
Anatomy , Students, Medical , Humans , Anatomy/education , Printing, Three-Dimensional , Skull/diagnostic imaging , Polyesters , Models, Anatomic
4.
Insect Mol Biol ; 31(6): 747-759, 2022 12.
Article in English | MEDLINE | ID: mdl-35822263

ABSTRACT

The ovipositor comprises the external genitalia of female insects, which plays an important role in the mating and ovipositing process of insects. However, it remains rudimentary of regional gene expression and physiological function in the ovipositor during structural development. Here, we analysed the basic structure and characteristics of the ovipositor in the migratory locust Locusta migratoria. RNA-seq analysis revealed the specialization of chitin metabolism, lipids synthesis and transport, tanning and cuticular protein genes in the ovipositor. Among them, two cuticle protein genes, LmCP8 and LmACP79, were identified, which are specifically expressed in the ovipositor. Functional analysis based on RNA interference showed that deficiency of LmCP8 affected the structural development of the ovipositor resulting in the retention of a large number of remaining unproduced oocysts in the ovary of the locusts. Our results provide a fundamental resource to investigate the structural development and physiological function of the ovipositor in L. migratoria.


Subject(s)
Locusta migratoria , Female , Animals , Locusta migratoria/genetics , Insect Proteins/metabolism , RNA Interference , Insecta/metabolism
5.
Clin Immunol ; 241: 109079, 2022 08.
Article in English | MEDLINE | ID: mdl-35842211

ABSTRACT

OBJECTIVES: To investigate the differentiation of regulatory T cells (Tregs) induced by methylprednisolone (MP) pulse therapy in patients with Systemic Lupus Erythematosus (SLE). METHODS: We enrolled 30 patients with SLE and analyzed peripheral blood mononuclear cells (PBMCs) before and after MP pulse therapy. Peripheral Tregs, apoptosis of PBMCs subsets, and TGFß production by monocytes was quantified by flow cytometry. Proliferation and IFN-γ production of CD4+ T cells were measured. Furthermore, TGFß1 production by human monocyte-derived macrophages (HMDM) stimulated with MP-treated CD4+ T cells were quantified by ELISA. RESULTS: Peripheral Tregs was significantly increased after MP pulse therapy (6.76 ± 1.46% vs. 3.82 ± 1.02%, p < 0.01), with an expansion of Nrp1- induced Tregs (4.54 ± 0.46% vs. 1.75 ± 0.38%, p < 0.01). Proliferation and IFN-γ production of CD4+ T cells were significantly decreased after MP pulse therapy. MP pulse therapy induced CD4+ T cell apoptosis (early apoptosis, 26.34 ± 3.54% vs. 14.81 ± 2.89%, p < 0.01) and TGFß expression on monocytes (6.02% vs. 2.45%, p < 0.01). Furthermore, MP induced CD4+ T cell apoptosis in vitro, which stimulated HMDM to produce TGFß. Moreover, elevated TGFß level in supernatant from HMDM stimulated with MP-treated CD4+ T cells promoted Tregs differentiation. CONCLUSIONS: MP pulse therapy induces CD4+ T cell apoptosis, which promotes monocytes to produce TGFß and further facilitates Tregs differentiation. Newly-differentiated Tregs suppress proliferation and IFN-γ production of CD4+ T cells and contribute to immunoregulatory milieu after MP pulse therapy.


Subject(s)
Lupus Erythematosus, Systemic , T-Lymphocytes, Regulatory , Apoptosis , Humans , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/metabolism , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/metabolism
6.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35328528

ABSTRACT

Insect wing consists of a double layer of epidermal cells that produce and secrete the dorsal and ventral cuticular components. It is important for the stability of epidermal cells during wing development and morphogenesis, but its specific gene expression and physiological function during this process remain unclear. In our previous work, a wing cuticle protein gene LmACP19 was identified in Locusta migratoria based on transcriptomic data. Here, we report on its roles in wing development and morphogenesis. LmACP19 encodes a chitin-binding protein belonging to RR-2 subfamily of CPR family, which is highly homologous to CP19-like proteins in other insect species. RT-qPCR analysis revealed that LmACP19 is highly expressed in wing pads of fifth-instar nymphs, and its encoded protein is located in two layers of epidermal cells but not in the cuticle. Suppression of LmACP19 by RNA interference led to abnormal wing pad and wing morphogenesis with curved, unclosed, and wrinkled phenotypes during nymph-to-nymph and nymph-to-adult transition, respectively. Furthermore, deficiency of LmACP19 affected arrangement of epidermal cells, resulting in apoptosis. Our results indicate that LmACP19 is indispensable for wing development and normal morphological structure by maintaining the stability of epidermal cells during L. migratoria molting.


Subject(s)
Locusta migratoria , Animals , Epidermal Cells/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Locusta migratoria/genetics , Morphogenesis/genetics , Nymph/genetics , RNA Interference , Wings, Animal/metabolism
7.
Hepatology ; 75(2): 266-279, 2022 02.
Article in English | MEDLINE | ID: mdl-34608663

ABSTRACT

BACKGROUND AND AIMS: The increased frequency of urinary tract infections in patients with primary biliary cholangitis (PBC) and the cross-reactivity between the lipoyl domains (LD) of human pyruvate dehydrogenase complex (hPDC-E2) and Escherichia coli PDC-E2 (ePDC-E2) have long suggested a role of E. coli in causality of PBC. This issue, however, has remained speculative. We hypothesized that by generating specific constructs of human and E. coli PDC-E2, we would be able to assess the specificity of autoantibody responses and define whether exposure to E. coli in susceptible hosts is the basis for the antimitochondrial antibody (AMA) response. APPROACH AND RESULTS: Importantly, the reactivity of hPDC-E2 LD (hPDC-E2LD) affinity-purified antibodies against hPDC-E2LD could only be removed by prior absorption with hPDC-E2LD and not ePDC-E2, suggesting the presence of unique human PDC-E2 epitopes distinct from E. coli PDC-E2. To identify the autoepitope(s) present in hPDC-E2LD, a more detailed study using a variety of PDC-E2 constructs was tested, including the effect of lipoic acid (LA) on ePDC-E2 conformation and AMA recognition. Individual recombinant ePDCE2 LD domains LD1, LD2 and LD3 did not react with either AMA or antibodies to LA (anti-LA), but in contrast, anti-LA was readily reactive against purified recombinant LD1, LD2, and LD3 expressed in tandem (LP); such reactivity increased when LP was precultured with LA. Moreover, when the three LD (LD1, LD2, LD3) domains were expressed in tandem in pET28a or when LD1 was expressed in another plasmid pGEX, they were lipoylated and reactive to PBC sera. CONCLUSIONS: In conclusion, our data are consistent with an exposure to E. coli that elicits specific antibody to ePDC-E2 resulting in determinant spreading and the classic autoantibody to hPDC-E2LD. We argue this is the first step to development of human PBC.


Subject(s)
Autoantigens/immunology , Dihydrolipoyllysine-Residue Acetyltransferase/immunology , Escherichia coli Infections/complications , Escherichia coli/immunology , Liver Cirrhosis, Biliary/microbiology , Mitochondria/immunology , Mitochondrial Proteins/immunology , Autoantibodies/blood , Case-Control Studies , Cross Reactions/immunology , Epitopes/immunology , Escherichia coli/enzymology , Hepatitis, Autoimmune/blood , Humans , Lipoylation , Molecular Conformation/drug effects , Thioctic Acid/immunology , Thioctic Acid/pharmacology
8.
J Med Internet Res ; 22(12): e19767, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33106226

ABSTRACT

BACKGROUND: The increasing amount of health information available on the internet makes it more important than ever to ensure that people can judge the accuracy of this information to prevent them from harm. It may be possible for platforms to set up protective mechanisms depending on the level of digital health literacy and thereby to decrease the possibility of harm by the misuse of health information. OBJECTIVE: This study aimed to create an instrument for digital health literacy assessment (DHLA) based on the eHealth Literacy Scale (eHEALS) to categorize participants by level of risk of misinterpreting health information into high-, medium-, and low-risk groups. METHODS: This study developed a DHLA and constructed an online health information bank with correct and incorrect answers. Receiver operating characteristic curve analysis was used to detect the cutoff value of DHLA, using 5 items randomly selected from the online health information bank, to classify users as being at low, medium, or high risk of misjudging health information. This provided information about the relationship between risk group for digital health literacy and accurate judgement of online health information. The study participants were Taiwanese residents aged 20 years and older. Snowball sampling was used, and internet questionnaires were anonymously completed by the participants. The reliability and validity of DHLA were examined. Logistic regression was used to analyze factors associated with risk groups from the DHLA. RESULTS: This study collected 1588 valid questionnaires. The online health information bank included 310 items of health information, which were classified as easy (147 items), moderate (122 items), or difficult (41 items) based on the difficulty of judging their accuracy. The internal consistency of DHLA was satisfactory (α=.87), and factor analysis of construct validity found three factors, accounting for 76.6% of the variance. The receiver operating characteristic curve analysis found 106 people at high risk, 1368 at medium risk, and 114 at low risk of misinterpreting health information. Of the original grouped cases, 89.6% were correctly classified after discriminate analysis. Logistic regression analysis showed that participants with a high risk of misjudging health information had a lower education level, lower income, and poorer health. They also rarely or never browsed the internet. These differences were statistically significant. CONCLUSIONS: The DHLA score could distinguish those at low, medium, and high risk of misjudging health information on the internet. Health information platforms on the internet could consider incorporating DHLA to set up a mechanism to protect users from misusing health information and avoid harming their health.


Subject(s)
Health Literacy/methods , Adult , Cross-Sectional Studies , Female , Humans , Internet , Male , Reproducibility of Results , Surveys and Questionnaires , Taiwan , Telemedicine , Young Adult
9.
Cancers (Basel) ; 12(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545442

ABSTRACT

Cervical cancer is the fourth most common cancer in women around the world. Cancer stem cells (CSCs) are responsible for cancer initiation, as well as resistance to radiation therapy, and are considered as the effective target of cancer therapy. Indoleamine 2,3-dioxygenase 1 (IDO1) mediates tryptophan metabolism and T cell suppression, but the immune-independent function of IDO1 in cancer behavior is not fully understood. Using tumorsphere cultivation for enriched CSCs, we firstly found that IDO1 was increased in HeLa and SiHa cervical cancer cells and in these two cell lines after radiation treatment. The radiosensitivity of HeLa and SiHa tumorsphere cells was increased after the inhibition of IDO1 through RNA interference or by the treatment of INCB-024360, an IDO1 inhibitor. With the treatment of kynurenine, the first breakdown product of the IDO1-mediated tryptophan metabolism, the radiosensitivity of HeLa and SiHa cells decreased. The inhibition of Notch1 by shRNA downregulated IDO1 expression in cervical CSCs and the binding of the intracellular domain of Notch (NICD) on the IDO1 promoter was reduced by Ro-4929097, a γ-secretase inhibitor. Moreover, the knockdown of IDO1 also decreased NICD expression in cervical CSCs, which was correlated with the reduced binding of aryl hydrocarbon receptor nuclear translocator to Notch1 promoter. In vivo treatment of INCB-0234360 sensitized SiHa xenograft tumors to radiation treatment in nude mice through increased DNA damage. Furthermore, kynurenine increased the tumorsphere formation capability and the expression of cancer stemness genes including Oct4 and Sox2. Our data provide a reciprocal regulation mechanism between IDO1 and Notch1 expression in cervical cancer cells and suggest that the IDO1 inhibitors may potentially be used as radiosensitizers.

10.
Ann Rheum Dis ; 79(4): 518-524, 2020 04.
Article in English | MEDLINE | ID: mdl-32114510

ABSTRACT

BACKGROUND: Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterised by aberrant B cell hyperactivation, whose mechanism is partially understood. METHODS: We performed whole transcriptome sequencing of B cells from three pSS patients and three matched healthy controls (HC). Differentially expression genes (DEGs) were confirmed with B cells from 40 pSS patients and 40 HC by quantitative PCR and western blot. We measured the proliferation potential and immunoglobulins production of siRNA-transfected or plasmid-transfected B cells stimulated with cytosine-phosphate-guanine (CpG) or anti-IgM. We also explored Toll-like receptor 9 (TLR9) signalling to reveal the potential mechanism of B cell hyperactivation in pSS. RESULTS: We identified 77 upregulated and 32 downregulated DEGs in pSS B cells. We confirmed that epithelial stromal interaction (EPST1) expression in pSS B cells was significantly higher than that from HCs. EPSTI1-silencing B cells stimulated with CpG were less proliferated and produced lower level of IgG and IgM comparing with control B cells. EPSTI1-silencing B cells expressed lower level of p-p65 and higher level of IκBα, and B cells with overexpressed EPSTI1 showed higher level of p-p65 and lower level of IκBα. Finally, IκBα degradation inhibitor Dehydrocostus Lactone treatment attenuated p65 phosphorylation promoted by EPSTI1. CONCLUSION: Elevated EPSTI1 expression in pSS B cells promoted TLR9 signalling activation and contributed to the abnormal B cell activation, which was promoted by facilitating p65 phosphorylation and activation of NF-κB signalling via promoting IκBα degradation. EPSTI1 might be implicated in pSS pathogenesis and was a potential therapeutic target of pSS.


Subject(s)
B-Lymphocytes/immunology , Lymphocyte Activation/immunology , NF-kappa B/immunology , Neoplasm Proteins/immunology , Sjogren's Syndrome/immunology , Adolescent , Adult , Aged , Case-Control Studies , Female , Humans , Lactones , Male , Middle Aged , NF-KappaB Inhibitor alpha/immunology , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Phosphorylation , RNA, Small Interfering , Sesquiterpenes , Sjogren's Syndrome/metabolism , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , Transcription Factor RelA/immunology , Transcription Factor RelA/metabolism , Young Adult
11.
Neuroscience ; 429: 282-292, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31689489

ABSTRACT

Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and ß3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as ß3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and ß3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the ß3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.


Subject(s)
Melatonin , Animals , Cytoskeleton , Melatonin/pharmacology , Mice , Nerve Regeneration , Rats , Rats, Wistar , Receptors, Melatonin
12.
Cancers (Basel) ; 11(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678233

ABSTRACT

Breast cancer is the most common cancer for women in Taiwan and post-lumpectomy radiotherapy is one of the therapeutic strategies for this malignancy. Although the 10-year overall survival of breast cancer patients is greatly improved by radiotherapy, the locoregional recurrence is around 10% and triple negative breast cancers (TNBCs) are at a high risk for relapse. The aim of this paper is to understand the mechanisms of radioresistance in breast cancers which may facilitate the development of new treatments in sensitizing breast cancer toward radiation therapy. Tribbles homolog 3 (TRIB3) is a pseudokinase protein and known to function as a protein scaffold within cells. It has been reported that higher TRIB3 expression is a poor prognostic factor in breast cancer patients with radiotherapy. In this study, we investigate the involvement of TRIB3 in the radiation response of TNBC cells. We first found that the expression of TRIB3 and the activation of Notch1, as well as Notch1 target genes, increased in two radioresistant TNBC cells. Knockdown of TRIB3 in radioresistant MDA-MB-231 TNBC cells decreased Notch1 activation, as well as the CD24-CD44⁺ cancer stem cell population, and sensitized cells toward radiation treatment. The inhibitory effects of TRIB3 knockdown in self-renewal or radioresistance could be reversed by forced expression of the Notch intracellular domain. We also observed an inhibition in cell growth and accumulated cells in the G0/G¹ phase in radioresistant MDA-MB-231 cells after knockdown of TRIB3. With immunoprecipitation and mass spectrometry analysis, we found that, BCL2-associated transcription factor 1 (BCLAF1), BCL2 interacting protein 1 (BNIP1), or DEAD-box helicase 5 (DDX5) were the possible TRIB3 interacting proteins and immunoprecipitation data also confirmed that these proteins interacted with TRIB3 in radioresistant MDA-MB-231 cells. In conclusion, the expression of TRIB3 in radioresistant TNBC cells participated in Notch1 activation and targeted TRIB3 expression may be a strategy to sensitize TNBC cells toward radiation therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...