Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Indoor Air ; 28(2): 276-286, 2018 03.
Article in English | MEDLINE | ID: mdl-29227564

ABSTRACT

In this study, we evaluated the long-term antifungal effectiveness of 3 types of interior building materials (gypsum board [GB], cement board [CB], and softwood plywood [S-PW]) impregnated with thermally reduced silver nanoparticles supported by titanium dioxide (AgNPs/TiO2 ) under 95% relative humidity for 4 weeks. AgNPs/TiO2 was synthesized at 2 thermal reduction temperatures (TRTs, 120 and 200°C) with 2 different AgNP weight percentages (2 and 5 wt%). Four different silver-loading levels (SLLs, 0.025, 0.05, and 0.5 µg/cm2 and the critical concentration required to inhibit fungal growth on agar plates) and 3 fungal species (Aspergillus niger, Penicillium spinulosum, and Stachybotrys chartarum) were used in the experiments. Higher temperature reduced more ionic Ag+ to metallic Ag0 and increased the dispersion of Ag on TiO2 surface. The 200°C thermally reduced AgNPs/TiO2 demonstrated excellent antifungal efficiency: Mold growth was almost completely inhibited for 28 days at the low SLL of 0.5 µg/cm2 . Additionally, AgNPs/TiO2 exhibited higher antifungal activity on GB and CB than on S-PW. The stepwise regression results indicated that the TRT of AgNPs/TiO2 (ß = -0.739 to -0.51), the SLL (ß = -0.477 to -0.269), and the Ag0 level in the AgNPs (ß = -0.379 to -0.136) were the major factors influencing antifungal activity and TRT might be the most significant one.


Subject(s)
Antifungal Agents , Construction Materials/microbiology , Fungi/growth & development , Metal Nanoparticles , Silver , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL