Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Pediatr Dent ; 47(6): 74-85, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997238

ABSTRACT

Mesenchymal stem cells (MSCs) have shown great potential as important therapeutic tools for dental pulp tissue engineering, with the maintenance and enhancement of their stemness being crucial for successful therapeutic application in vivo and three-dimensional (3D) spheroid formation considered a reliable technique for enhancing their pluripotency. Human exfoliated deciduous tooth stem cells (SHED) were cultured in a low attachment plate to form aggregates for five days. Then, the resulting spheroids were analyzed for pluripotent marker expression, paracrine secretory function, proliferation, signaling pathways involved, and distribution of key proteins within the spheroids. The results indicated that 3D spheroid formation significantly increased the activation of the transforming growth factor beta (TGF-ß)/Smad signaling pathway and upregulated the secretion and mRNA expression levels of TGF-ß, which in turn enhanced the expression of pluripotency markers in SHED spheroids. The activation of the TGF-ß/Smad signaling pathway through 3D spheroid formation was found to preserve the stemness properties of SHED. Thus, understanding the mechanisms behind pluripotency maintenance of SHED culture through 3D spheroid formation could have implications for the therapeutic application of MSCs in regenerative medicine and tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Stem Cells , Humans , Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Transforming Growth Factor beta/metabolism , Signal Transduction , Tooth, Deciduous , Cells, Cultured , Dental Pulp
2.
Biomed Pharmacother ; 144: 112252, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34619493

ABSTRACT

The protein arginine methyltransferase 5 (PRMT5) as the major type II arginine methyltransferase catalyzes the mono- and symmetric dimethylation of arginine residues in both histone and non-histone proteins. Recently, increasing evidence has demonstrated that PRMT5 plays an indispensable role in the occurrence and development of various human cancers by promoting the cell proliferation, invasion, and migration. It has become a promising and valuable target in the cancer epigenetic therapy. This review is to summarize the clinical significance of PRMT5 in the cancers such as lung cancer, breast cancer and colorectal cancer, and the drug discovery targeting PRMT5. Importantly, the existing PRMT5 inhibitors representing different molecular mechanisms, and their pharmacological effect, mechanism of action and biological affinity are analyzed. Clinical status, current problems and future perspective of PRMT5 inhibitors for the treatment of cancers are also discussed, all of which provides crucial help for the future discovery of PRMT5 targeted drugs for cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Animals , Antineoplastic Agents/adverse effects , Enzyme Inhibitors/adverse effects , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction
3.
Pharmacol Res ; 172: 105804, 2021 10.
Article in English | MEDLINE | ID: mdl-34450309

ABSTRACT

Bromodomain-containing proteins include bromodomain and extra-terminal (BET) and non-BET families. Due to the conserved bromodomain (BD) module between BD-containing proteins, and especially BETs with each member having two BDs (BD1 and BD2), the high degree of structural similarity makes BD-selective inhibitors much difficult to be designed. However, increasing evidences emphasized that individual BDs had distinct functions and different cellular phenotypes after pharmacological inhibition, and selectively targeting one of the BDs could result in a different efficacy and tolerability profile. This review is to summarize the pioneering progress of BD-selective inhibitors targeting BET and non-BET proteins, focusing on their structural features, biological activity, therapeutic application and experimental/theoretical mechanisms. The present proteolysis targeting chimeras (PROTAC) degraders targeting BDs, and clinical status of BD-selective inhibitors were also analyzed, providing a new insight into future direction of bromodomain-selective drug discovery.


Subject(s)
Drug Discovery , Protein Domains , Animals , Humans , Peptides/pharmacology , Proteins/antagonists & inhibitors , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...