Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 132: 112048, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593509

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a common and heterogeneous chronic disease, and the mechanism of Jinshui Huanxian formula (JHF) on IPF remains unclear. For a total of 385 lung normal tissue samples from the Gene Expression Omnibus database, 37,777,639 gene pairs were identified through microarray and RNA-seq platforms. Using the individualized differentially expressed gene (DEG) analysis algorithm RankComp (FDR < 0.01), we identified 344 genes as DEGs in at least 95 % (n = 81) of the IPF samples. Of these genes, IGF1, IFNGR1, GLI2, HMGCR, DNM1, KIF4A, and TNFRSF11A were identified as hub genes. These genes were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice with pulmonary fibrosis (PF) and MRC-5 cells, and they were highly effective at classifying IPF samples in the independent dataset GSE134692 (AUC = 0.587-0.788) and mice with PF (AUC = 0.806-1.000). Moreover, JHF ameliorated the pathological changes in mice with PF and significantly reversed the changes in hub gene expression (KIF4A, IFNGR1, and HMGCR). In conclusion, a series of IPF hub genes was identified, and validated in an independent dataset, mice with PF, and MRC-5 cells. Moreover, the abnormal gene expression was normalized by JHF. These findings provide guidance for further exploration of the pathogenesis and treatment of IPF.


Subject(s)
Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Idiopathic Pulmonary Fibrosis/genetics , Animals , Humans , Mice , Drugs, Chinese Herbal/pharmacology , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Male , Gene Expression Profiling , Cell Line , Disease Models, Animal
2.
BMC Pulm Med ; 23(1): 373, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794454

ABSTRACT

OBJECTIVE: The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear. We sought to identify IPF-related genes that may participate in the pathogenesis and predict potential targeted traditional Chinese medicines (TCMs). METHODS: Using IPF gene-expression data, Wilcoxon rank-sum tests were performed to identify differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks, hub genes, and competitive endogenous RNA (ceRNA) networks were constructed or identified by Cytoscape. Quantitative polymerase chain reaction (qPCR) experiments in TGF-ß1-induced human fetal lung (HFL) fibroblast cells and a pulmonary fibrosis mouse model verified gene reliability. The SymMap database predicted potential TCMs targeting IPF. The reliability of TCMs was verified in TGF-ß1-induced MRC-5 cells. MATERIALS: Multiple gene-expression profile data of normal lung and IPF tissues were downloaded from the Gene Expression Omnibus database. HFL fibroblast cells and MRC-5 cells were purchased from Wuhan Procell Life Science and Technology Co., Ltd. (Wuhan, China). C57BL/12 mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). RESULTS: In datasets GSE134692 and GSE15197, DEGs were identified using Wilcoxon rank-sum tests (both p < 0.05). Among them, 1885 DEGs were commonly identified, and 87% (1640 genes) had identical dysregulation directions (binomial test, p < 1.00E-16). A PPI network with 1623 nodes and 8159 edges was constructed, and 18 hub genes were identified using the Analyze Network plugin in Cytoscape. Of 18 genes, CAV1, PECAM1, BMP4, VEGFA, FYN, SPP1, and COL1A1 were further validated in the GeneCards database and independent dataset GSE24206. ceRNA networks of VEGFA, SPP1, and COL1A1 were constructed. The genes were verified by qPCR in samples of TGF-ß1-induced HFL fibroblast cells and pulmonary fibrosis mice. Finally, Sea Buckthorn and Gnaphalium Affine were predicted as potential TCMs for IPF. The TCMs were verified by qPCR in TGF-ß1-induced MRC-5 cells. CONCLUSION: This analysis strategy may be useful for elucidating novel mechanisms underlying IPF at the transcriptome level. The identified hub genes may play key roles in IPF pathogenesis and therapy.


Subject(s)
Idiopathic Pulmonary Fibrosis , Transforming Growth Factor beta1 , Humans , Animals , Mice , Transforming Growth Factor beta1/metabolism , Gene Expression Profiling , Reproducibility of Results , Mice, Inbred C57BL , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Computational Biology
3.
Biosci Rep ; 43(11)2023 11 30.
Article in English | MEDLINE | ID: mdl-36799253

ABSTRACT

BACKGROUND: The aim of this study was to explore the combined efficacy ofeffective-component compatibility of Bufei Yishen formula III (ECC-BYF III) and exercise rehabilitation (ER) in inhibiting airway mucus hypersecretion in a chronic obstructive pulmonary disease (COPD) rat model. METHODS: A total of 48 SD rats were divided into control, model, acetylcysteine (NAC), ECC-BYF III, ER, and ECC-BYF III + ER groups (n=8). COPD rats were exposed to cigarette smoke and bacteria for 8 weeks and administered various treatments over the next eight weeks. Rats were euthanized at week 17 after pulmonary function testing. Pathological examination of lung tissues was performed. IL-6 and IL-10 levels were measured in bronchoalveolar lavage fluid (BALF) and protein levels of MUC5AC, MUC5B, AQP-5, EGFR, ERK, JNK, and p38 were measured in lung tissues. RESULTS: Improved pulmonary function and pathological changes were observed in ECC-BYF III, ECC-BYF III + ER, and NAC groups. ECC-BYF III and ECC-BYF III + ER had greater mean alveolar number (MAN) compared with NAC. Lung inflammation and goblet cell generation were reduced and MUC5AC, MUC5B and AQP-5 expressions were lower in all treatment groups. ECC-BYF III has more significant effect on MUC5AC than ER and NAC. ECC-BYFIII + ER had a greater effect on suppressing IL-6 in BALF compared with other treatments. ECC-BYFIII, ER, and ECC-BYF III + ER reduced EGFR, ERK, JNK, and p38 phosphorylated protein levels. ECC-BYFIII+ER had a greater effect on p-JNK and p-p38 than ECC-BYFIII and NAC. CONCLUSION: ECC-BYF III, ER, and ECC-BYF III + ER have efficacy in inhibiting airway mucus hypersecretion with improved pulmonary function and pathological changes. ECC-BYF III had a greater effect in improving MAN and MUC5AC in lung tissue. ECC-BYF III+ER had a greater effect in alleviating pulmonary pathology and inflammation. These effects may be mediated by inhibition of the EGFR/MAPK pathway.


Subject(s)
Interleukin-6 , Pulmonary Disease, Chronic Obstructive , Animals , Rats , ErbB Receptors/metabolism , Interleukin-6/metabolism , Lung/pathology , Mucus/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Rats, Sprague-Dawley
4.
Article in English | MEDLINE | ID: mdl-36387362

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a long-term respiratory disorder marked by restricted airflow and persistent respiratory symptoms. According to previous studies, icariin combined with nobiletin (I&N) significantly ameliorates COPD, but the therapeutic mechanisms remain unclear. Purpose: The aim of the study is to investigate the therapeutic mechanisms of I&N against COPD using network pharmacology and experimental validation. Methods: The targets of I&N and related genes of COPD were screened and their intersection was selected. Next, the protein-protein interaction (PPI) networks, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Further, a COPD rat model was established to validate the effect and mechanisms of I&N. Results: 445 potential targets I&N were obtained from SwissTargetPrediction, STITCH 5.0, and PharmMapper databases. 1831 related genes of COPD were obtained from GeneCards, DrugBank, and DisGeNet databases. 189 related genes were screened via matching COPD targets with I&N. 16 highest score targets among 189 targets were obtained according to PPI networks. GO and KEGG pathway enrichment analyses of 16 highest score targets suggested that these key genes of I&N were mostly enriched in the tumor necrosis factor (TNF) pathway, mitogen-activated protein kinase (MAPK) pathway, and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (AKT) pathway. Therefore, the treatments of I&N for COPD were connected with inflammation-related pathways. In in vivo experiments, the studies indicated that I&N improved the lung function and alleviated the damage of pulmonary histopathology. Moreover, I&N reduced levels of interleukin (IL)-6, IL-1ß, and TNF-α in lung tissues of COPD rats and inhibited the activation of the MAPK pathway and PI3K-Akt pathway. Conclusions: Icariin combined with nobiletin has therapeutic effects on COPD by inhibiting inflammation. The potential mechanisms of I&N may relate to the MAPK pathway and PI3K-Akt pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...