Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Opt Express ; 29(11): 16455-16468, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154208

ABSTRACT

Long-range surface plasmon resonances (LRSPRs) are featured with longer propagation and deeper penetration, compared with conventional surface plasmon resonances (SPRs). Thus, LRSPR-based fiber sensors are considered to have great potential for highly sensitive detection in chemistry or biomedicine areas. Here, we propose and demonstrate a near-infrared LRSPR sensor based on a D-shaped honeycomb microstructured optical fiber (MOF) directly coated with gold film. Although there is no additional heterogeneous buffer layer, the optical field of the long-range surface plasmon polariton (LRSPP) mode penetrates strongly into the analyte region. Thus the effective refractive index of the LRSPP mode depends highly on the analyte's material refractive index and an abnormal dispersion relationship between the LRSPP mode and MOF's y-polarized core mode is observed. The mechanism of the LRSPR excitation in the coupling zone is attributed to an avoided crossing effect between these two modes. It also results in the generation of a narrow-bandwidth peak in the loss spectrum of the core mode. Further discussion shows that the resonance wavelength is mainly determined by the core size that is contributed by the MOF's cladding pitch, silica-web thickness and planar-layer-silica thickness together. It indicates that the operation wavelength of the proposed LRSPR device can be flexibly tuned in a broadband wavelength range, even longer than 2 µm, through appropriately designing the MOF's structural parameters. Finally, the proposed LRSPR sensor shows the highest wavelength sensitivity of 14700 nm/RIU and highest figure of merit of 475 RIU-1 for the analyte refractive index range from 1.33 to 1.39.

2.
Sensors (Basel) ; 20(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846969

ABSTRACT

Polarization-maintaining fibers (PMFs) have always received great attention in fiber optic communication systems and components which are sensitive to polarization. Moreover, they are widely applied for high-accuracy detection and sensing devices, such as fiber gyroscope, electric/magnetic sensors, multi-parameter sensors, and so on. Here, we demonstrated the combination of a fiber Bragg grating (FBG) and Sagnac interference in the same section of a new type of PANDA-structure PMF for the simultaneous measurement of axial strain and temperature. This specialty PMF features two stress-applied parts made of lanthanum-aluminum co-doped silicate (SiO2-Al2O3-La2O3, SAL) glass, which has a higher thermal expansion coefficient than borosilicate glass used commonly in commercial PMFs. Furthermore, the FBG inscribed in this SAL PMF not only aids the device in discriminating strain and temperature, but also calibrates the phase birefringence of the SAL PMF more precisely thanks to the much narrower bandwidth of grating peaks. By analyzing the variation of wavelength interval between two FBG peaks, the underlying mechanism of the phase birefringence responding to temperature and strain is revealed. It explains exactly the sensing behavior of the SAL PMF based Sagnac interference dip. A numerical simulation on the SAL PMF's internal stress and consequent modal effective refractive indices was performed to double confirm the calibration of fiber's phase birefringence.

3.
Opt Express ; 26(1): 544-551, 2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29328331

ABSTRACT

We propose and experimentally demonstrate a directional torsion sensor based on a Mach-Zehnder interferometer formed in a multicore fiber (MCF) with a ~570-µm-long helical structure (HS). The HS was fabricated into the MCF by simply pre-twisting and then heating with a CO2 laser splicing system. This device shows the capability of directional torsion measurement from -17.094 rad/m to 15.669 rad/m with the sensitivity of ~0.118 nm/(rad/m). Moreover, since the multiple interferences respond differently to torsion and temperature simultaneously, the temperature cross-sensitivity of the proposed sensor can be eliminated effectively. Besides, the sensor owns other merits such as easy fabrication and good mechanical robustness.

4.
Sci Rep ; 7: 46633, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28418041

ABSTRACT

Optical fiber sensors for strain measurement have been playing important roles in structural health monitoring for buildings, tunnels, pipelines, aircrafts, and so on. A highly sensitive strain sensor based on helical structures (HSs) assisted Mach-Zehnder interference in an all-solid heterogeneous multicore fiber (MCF) is proposed and experimentally demonstrated. Due to the HSs, a maximum strain sensitivity as high as -61.8 pm/µÎµ was experimentally achieved. This is the highest sensitivity among interferometer-based strain sensors reported so far, to the best of our knowledge. Moreover, the proposed sensor has the ability to discriminate axial strain and temperature, and offers several advantages such as repeatability of fabrication, robust structure and compact size, which further benefits its practical sensing applications.

5.
Opt Lett ; 41(2): 380-3, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26766719

ABSTRACT

We report on a high-performance curvature sensor based on a long-period grating (LPG) in a dual-concentric-core fiber (DCCF). The LPG is inscribed to couple light from the fundamental mode of the central core to the ring-core modes, resulting in the generation of a series of resonant dips. Two adjacent dips shift toward each other when the LPG is bent. By monitoring the variation of the wavelength interval between these two dips, this LPG can be applied in curvature measurement with a sensitivity as high as -9.046 nm/m(-1). More importantly, such a wavelength interval is almost immune to the cross impacts of temperature and axial strain, since the sensitivities to temperature and axial strain are only 2.6 pm/°C and 0.083 pm/µÎµ, respectively.

6.
Opt Express ; 23(1): 253-63, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25835672

ABSTRACT

We provide a comprehensive study on the efficient third harmonic generation (THG) in a lossy metal-hybrid-metal asymmetric plasmonic slot waveguide (MHM) to develop a method for efficient THG by focusing on the modal phase-matching condition (PMC), the third-order nonlinear susceptibility of the nonlinear interactive material, and the pump-harmonic modal overlap in conjunction with reasonable linear propagation loss. In addition to the PMC and the nonlinear material, the stimulated THG process can be greatly enhanced by the large pump-harmonic modal overlap. With 1 W pump power, simulation results present that THG conversion efficiency up to 2.79 × 10(-4) within 4.5 ����m MHM can be achieved.

7.
Opt Express ; 23(1): 340-8, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25835680

ABSTRACT

An all-fiber multiwavelength Tm-doped laser assisted by four-wave mixing (FWM) in highly Germania-doped highly nonlinear fiber (HG-HNLF) has been experimentally demonstrated. Benefiting from the high nonlinearity of the HG-HNLF, intensity-dependent gain caused by FWM is introduced into the laser cavity to mitigate the gain competition in Tm-doped fiber. Thanks to a 50-m HG-HNLF, 9, 22, and 36 lasing lines with considering 10-dB, 20-dB, and 30-dB bandwidth, respectively is obtained at room temperature with wavelength spacing of 0.86 nm. More than 30-nm broad-band lasing can be obtained. The stability of the proposed fiber laser has also been studied. Repeat measurements show the power fluctuations and wavelength drifts of the lasing lines are less than 1.6 dB and 0.05 nm, respectively. The laser performances without the assistance of HG-HNLF have fewer center wavelengths lasing, which indicates that FWM in HG-HNLF plays an important role for the multiwavelength laser operation.

8.
Chin Med J (Engl) ; 128(7): 902-8, 2015 Apr 05.
Article in English | MEDLINE | ID: mdl-25836610

ABSTRACT

BACKGROUND: The aim of this research was to evaluate long-term pulmonary sequelae on paired inspiration-expiration thin-section computed tomography (CT) scans 3 years after influenza A (H1N1) virus-associated pneumonia, and to analyze the affecting factors on pulmonary fibrosis. METHODS: Twenty-four patients hospitalized with H1N1 virus-associated pneumonia at our hospital between September 2009 and January 2010 were included. The patients underwent thin-section CT 3 years after recovery. Abnormal pulmonary lesion patterns (ground-glass opacity, consolidation, parenchymal bands, air trapping, and reticulation) and evidence of fibrosis (architectural distortion, traction bronchiectasis, or honeycombing) were evaluated on follow-up thin-section CT. Patients were assigned to Group 1 (with CT evidence of fibrosis) and Group 2 (without CT evidence of fibrosis). Demographics, rate of mechanical ventilation therapy, rate of intensive care unit admission, cumulative prednisolone-equivalent dose, laboratory tests results (maximum levels of alanine aminotransferase, aspartate transaminase [AST], lactate dehydrogenase [LDH], and creatine kinase [CK]), and peak radiographic opacification of 24 patients during the course of their illness in the hospital were compared between two groups. RESULTS: Parenchymal abnormality was present in 17 of 24 (70.8%) patients and fibrosis occurred in 10 of 24 (41.7%) patients. Patients in Group 1 (10/24; 41.7%) had a higher rate of mechanical ventilation therapy (Z = -2.340, P = 0.019), higher number of doses of cumulative prednisolone-equivalent (Z = -2.579, P = 0.010), higher maximum level of laboratory tests results (AST [Z = -2.140, P = 0.032], LDH [Z = -3.227, P = 0.001], and CK [Z = -3.345, P = 0.019]), and higher peak opacification on chest radiographs (Z = -2.743, P = 0.006) than patients in group 2 (14/24; 58.3%). CONCLUSIONS: H1N1 virus-associated pneumonia frequently is followed by long-term pulmonary sequelae, including fibrotic changes, in lung parenchyma. Patients who need more steroid therapy, need more mechanical ventilation therapy, had higher laboratory tests results (maximum levels of AST, LDH, and CK), and had higher peak opacification on chest radiographs during treatment are more likely to develop lung fibrosis.


Subject(s)
Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/complications , Influenza, Human/virology , Lung/diagnostic imaging , Lung/pathology , Pneumonia/complications , Pneumonia/microbiology , Tomography, X-Ray Computed/methods , Adult , Female , Humans , Lung/virology , Male , Middle Aged , Pneumonia/diagnostic imaging
9.
Opt Lett ; 40(6): 894-7, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25768140

ABSTRACT

We study third-harmonic generation (THG) in parallel-coupled waveguides where the spatial modulation of the mode intensity provides quasi-phase matching, called coupling-length phase matching (CLPM), for efficient nonlinear frequency conversion. Different types of CLPM are investigated for THG, and it is found that two sets of CLPM conditions can be practically implemented with traditional waveguides. These two CLPM conditions are further investigated by considering nonlinear phase modulations, which can degrade the CLPM-based THG conversion. However, up to 45% efficiency is still possible in this scheme. The greatest significance of this approach is that the requirement of perfect phase matching in a single waveguide is no longer necessary, leading to an alternative waveguide design for THG.

10.
Opt Express ; 23(26): 33001-7, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26831968

ABSTRACT

We report on a compact sensor by integrating a Mach-Zehnder interference and a cladding Bragg grating in a same section of all-solid photonic bandgap fiber. Theoretical investigation reveals that the Bragg grating resonance stems from the coupling of counter-propagating cladding LP01-like supermodes and the Mach-Zehnder interference works between a LP01-like supermode and LP01 core mode. Compared with the interference fringe, such supermode grating dip responses to axial strain in a more sensitive and opposite-direction manner. Whereas, the interference fringe shows a higher temperature sensitivity than the supermode grating dip. By means of these different responses, this device finds a useful application in the discrimination of temperature and axial strain.

11.
Opt Express ; 22(20): 24367-77, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25322012

ABSTRACT

The conversion efficiency of third harmonic generation (THG) from mid-IR (3600 nm) to near-IR (1200 nm) regions in a silicon-silicon-nanocrystal hybrid plasmonic waveguide (SSHPW) was calculated. The required modal phase-matching condition (PMC) between the 0-th mode at fundamental wave (FW) and the 2-nd mode at third harmonic (TH) is achieved by carefully designing the waveguide geometry. Benefiting from the hybridized surface plasmon polariton (SPP) nature of the two guided modes, the SSHPW is capable of achieving both high THG nonlinear coefficient |I6| and reasonable linear propagation loss, thereby resulting in large figure-of-merits (FOMs) for both FW and TH. According to our simulation, THG conversion efficiency up to 0.823% is achieved at 62.9 ����m SSHPW with pump power of 1 W.

12.
Opt Express ; 22(15): 18612-24, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25089480

ABSTRACT

An asymmetric plasmonic slot waveguide (APSW) for efficient phase-matched third harmonic generation (THG) is proposed and demonstrated theoretically. Nonlinear organic material DDMEBT polymer is integrated into the bottom of the metallic slot, while silicon is used to fill the top of the slot. We introduce the rigorous coupled-mode equations of THG in the lossy APSW and apply them to optimize the waveguide geometry. Taking advantage of the surface plasmon polaritons (SPPs), the electric fields can be tightly confined in the metallic slot region and the nonlinear effect is greatly enhanced accordingly. Then, we investigate the relationships between THG efficiency and parameters such as slot width and height, phase matching condition (PMC), modal overlap related nonlinear parameter, figure-of-merit, pump power and detuning. With the proposed asymmetric waveguide, we demonstrate a high THG conversion efficiency of 4.88 × 10(-6) with a pump power of 1 W and a detuning constant of -36 m(-1) at a waveguide length of 10.65 ����m.

13.
Opt Lett ; 38(20): 4070-3, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24321925

ABSTRACT

We report on the fabrication of a fiber Bragg grating (FBG) with multiple resonances in a two-dimensional waveguide array microstructured optical fiber containing 91 cores. Theoretical investigation reveals that these resonances originate from the identical and nonidentical mode couplings between forward-propagating and backward-propagating LP0m-like (m=1, 2, 3; LP refers to linearly polarized) supermodes. Since both the central wavelength and minimum transmission of these resonant dips respond differently to curvature and axial strain, this FBG can be applied in the simultaneous measurement of curvature and axial strain.

14.
Opt Express ; 21(23): 28403-13, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514350

ABSTRACT

We provide a comprehensive study on one-third harmonic generation (OTHG) in highly Germania-doped fiber (HGDF) by analyzing the phase matching conditions for the step index-profile and optimizing the design parameters. For stimulated OTHG in HGDF, the process can be enhanced by fiber attenuation at the pump wavelength which dynamically compensates the accumulated phase-mismatch along the fiber. With 500 W pump and 35 W seed power, simulation results show that a 31% conversion efficiency, which is 4 times higher than the lossless OTHG process, can be achieved in 34 m of HGDF with 90 mol. % GeO2 doping in the core.

15.
Opt Express ; 19(23): 22600-6, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109140

ABSTRACT

A maximum likelihood sequence detection (MLSD) receiver is used to detect data sequences in single-carrier coherent optical systems in the presence of laser phase noise. It requires no explicit phase estimation and involves only linear operations. It consistently shows improvement in the OSNR penalty (e.g., 1.1 dB at BER = 10⁻4 with memory length L =3) and the laser linewidth tolerance (e.g., around 4 times that of DAML at 1dB OSNR penalty at BER = 10⁻4 with memory length L =3) over the well-known DAML and Mth power approaches in laser phase noise (LPN)-impaired coherent optical systems.

16.
Zhonghua Jie He He Hu Xi Za Zhi ; 31(10): 736-9, 2008 Oct.
Article in Chinese | MEDLINE | ID: mdl-19080598

ABSTRACT

OBJECTIVE: To describe the clinical features of severe pneumonitis with Aeromonas veronii biovar sobria. METHOD: Case report and review of the related literatures. The clinical symptoms, laboratory tests, radiographic patterns, diagnosis, and therapeutic management of a case of severe pneumonia caused by A. veronii biovar sobria were described. RESULTS: The clinical symptoms of this patient included cough and sputum production with high fever, followed by acute respiratory distress symptom associated with septic shock. Progressive infiltration of lungs was evident in chest radiography, changes suggestive of interstitial pneumonia. Oxygenation was improved by mechanical ventilation and anti-shock therapy was administered. A. veronii biovar sobria was grown in three consecutive cultures of airway secretions by fiberoptic bronchoscopy. Mild interstitial inflammation was revealed by pathology of transbronchial lung biopsy specimens. The clinical symptoms and the chest infiltrates improved significantly after therapy with antibiotics and glucocorticoids. CONCLUSIONS: A. veronii biovar sobria, an intestinal bacterial pathogen, can cause severe pneumonia, which is often underestimated and inadequately understood. Appropriate antibiotics, glucocorticoids and nutritional support are effective treatments.


Subject(s)
Aeromonas , Gram-Negative Bacterial Infections/microbiology , Pneumonia, Bacterial/microbiology , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...