Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120496, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34689094

ABSTRACT

In this contribution, the solvent effects on the excited-state intramolecular proton transfer (ESIPT) and photophysical properties of 2-(4-(diphenylamine)phenyl)-3-hydroxy-4H-chromen-4-one (3HF-OH, Dyes Pigm. 2021, 184, 108865) in the dimethylsulfoxide (DMSO), acetonitrile (ACN), dichloromethane (DCM) and cyclohexane (CYH) phases have been comprehensively explored by using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The obtained bond lengths, bond angles and infrared (IR) vibration analysis related to the intramolecular hydrogen bond (IHB) reveal that the IHB intensity of 3HF-OH is weakened as the solvent polarity increased. Besides, the ESIPT process changes from the endothermic to the exothermic with the enlargement of solvent polarity, and the reaction barrier increases gradually. It is worth noting that the molecular configuration torsion of 3HF-OH is gradually intensified with the decline of solvent polarity, which aggravates the twisted intramolecular charge transfer (TICT) state and thereby partially attenuates the short-wavelength fluorescence of 3HF-OH in the CYH solvent. In addition to these, the structural torsion has restrained the occurrence of the ESIPT behavior by means of elevating the energy barrier. This theoretical research would provide valuable guidance for regulating and controlling the photophysical behavior of compounds via the strategy of changing solvent polarity.


Subject(s)
Methylene Chloride , Protons , Hydrogen Bonding , Molecular Conformation , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...