Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38700794

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-ß1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-ß/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.

2.
Mol Biotechnol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472694

ABSTRACT

This study focused on identifying potential key lncRNAs associated with gout under the mechanisms of copper death and iron death through ceRNA network analysis and Random Forest (RF) algorithm, which aimed to provide new insights into the molecular mechanisms of gout, and potential molecular targets for future therapeutic strategies of gout. Initially, we conducted an in-depth bioinformatics analysis of gout microarray chips to screen the key cuproptosis-related genes (CRGs) and key ferroptosis-related genes (FRGs). Using these data, we constructed a key ceRNA network for gout. Finally, key lncRNAs associated with gout were identified through the RF algorithm combined with ROC curves, and validated using the Comparative Toxicogenomics Database (CTD). We successfully identified NLRP3, LIPT1, and DBT as key CRGs associated with gout, and G6PD, PRKAA1, LIG3, PHF21A, KLF2, PGRMC1, JUN, PANX2, and AR as key FRGs associated with gout. The key ceRNA network identified four downregulated key lncRNAs (SEPSECS-AS1, LINC01054, REV3L-IT1, and ZNF883) along with three downregulated mRNAs (DBT, AR, and PRKAA1) based on the ceRNA theory. According to CTD validation inference scores and biological functions of target mRNAs, we identified a potential gout-associated lncRNA ZNF883/hsa-miR-539-5p/PRKAA1 regulatory axis. This study identified the key lncRNA ZNF883 in the context of copper death and iron death mechanisms related to gout for the first time through the application of ceRNA network analysis and the RF algorithm, thereby filling a research gap in this field and providing new insights into the molecular mechanisms of gout. We further found that lncRNA ZNF883 might function in gout patients by regulating PRKAA1, the mechanism of which was potentially related to uric acid reabsorption in the proximal renal tubules and inflammation regulation. The proposed lncRNA ZNF883/hsa-miR-539-5p/PRKAA1 regulatory axis might represent a potential RNA regulatory pathway for controlling the progression of gout disease. This discovery offered new molecular targets for the treatment of gout, and had significant implications for future therapeutic strategies in managing the gout.

3.
Biochem Genet ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324134

ABSTRACT

Non-union fractures pose a significant clinical challenge, often leading to prolonged pain and disability. Understanding the molecular mechanisms underlying non-union fractures is crucial for developing effective therapeutic interventions. This study integrates bioinformatics analysis and experimental validation to unravel key genes and pathways associated with non-union fractures. We identified differentially expressed genes (DEGs) between non-union and fracture healing tissues using bioinformatics techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological processes and pathways involved. Common DEGs were identified, and a protein-protein interaction (PPI) network was constructed. Fibronectin-1 (FN1), Thrombospondin-1 (THBS1), and Biglycan (BGN) were pinpointed as critical target genes for non-union fracture treatment. Experimental validation involved alkaline phosphatase (ALP) and Alizarin Red staining to confirm osteogenic differentiation. Our analysis revealed significant alterations in pathways related to cell behavior, tissue regeneration, wound healing, infection, and immune responses in non-union fracture tissues. FN1, THBS1, and BGN were identified as key genes, with their upregulation indicating potential disruptions in the bone remodeling process. Experimental validation confirmed the induction of osteogenic differentiation. The study provides comprehensive insights into the molecular mechanisms of non-union fractures, emphasizing the pivotal roles of FN1, THBS1, and BGN in extracellular matrix dynamics and bone regeneration. The findings highlight potential therapeutic targets and pathways for further investigation. Future research should explore interactions between these genes, validate results using in vivo fracture models, and develop tailored treatment strategies for non-union fractures, promising significant advances in clinical management.

4.
Saudi Pharm J ; 31(7): 1219-1228, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37293563

ABSTRACT

Benign prostatic hyperplasia (BPH) is a common urinary disease among the elderly, characterized by abnormal prostatic cell proliferation. Neferine is a dibenzyl isoquinoline alkaloid extracted from Nelumbo nucifera and has antioxidant, anti-inflammatory and anti-prostate cancer effects. The beneficial therapeutic effects and mechanism of action of neferine in BPH remain unclear. A mouse model of BPH was generated by subcutaneous injection of 7.5 mg/kg testosterone propionate (TP) and 2 or 5 mg/kg neferine was given orally for 14 or 28 days. Pathological and morphological characteristics were evaluated. Prostate weight, prostate index (prostate/body weight ratio), expression of type Ⅱ 5α-reductase, androgen receptor (AR) and prostate specific antigen were all decreased in prostate tissue of BPH mice after administration of neferine. Neferine also downregulated the expression of pro-caspase-3, uncleaved PARP, TGF-ß1, TGF-ß receptor Ⅱ (TGFBR2), p-Smad2/3, N-cadherin and vimentin. Expression of E-cadherin, cleaved PARP and cleaved caspase-3 was increased by neferine treatment. 1-100 µM neferine with 1 µM testosterone or 10 nM TGF-ß1 were added to the culture medium of the normal human prostate stroma cell line, WPMY-1, for 24 h or 48 h. Neferine inhibited cell growth and production of reactive oxygen species (ROS) in testosterone-treated WPMY-1 cells and regulated the expression of androgen signaling pathway proteins and those related to epithelial-mesenchymal transition (EMT). Moreover, TGF-ß1, TGFBR2 and p-Smad2/3, N-cadherin and vimentin expression were increased but E-cadherin was decreased after 24 h TGF-ß1 treatment in WPMY-1 cells. Neferine reversed the effects of TGF-ß1 treatment in WPMY-1 cells. Neferine appeared to suppress prostate growth by regulating the EMT, AR and TGF-ß/Smad signaling pathways in the prostate and is suggested as a potential agent for BPH treatment.

5.
Anticancer Agents Med Chem ; 23(12): 1457-1468, 2023.
Article in English | MEDLINE | ID: mdl-37005535

ABSTRACT

INTRODUCTION: Prostate cancer is the second-leading cause of cancer death in men. Sinularin is a soft coralsderived natural compound that has anticancer activity in many cancer cells. However, the pharmacological action of sinularin in prostate cancer is unclear. AIM: The aim of the study is to examine the anticancer effects of sinularin in prostate cancer cells. METHODS: We explored the anticancer effects of sinularin on the prostate cancer cell lines, PC3, DU145, and LNCaP, by MTT, Transwell assay, wound healing, flow cytometry, and western blotting. RESULTS: Sinularin inhibited the cell viability and colony formation of these cancer cells. Furthermore, sinularin inhibited testosterone-induced cell growth in LNCaP cells by downregulating the protein expression levels of androgen receptor (AR), type Ⅱ 5α-reductase, and prostate-specific antigen (PSA). Sinularin significantly attenuated the invasion and migration ability of PC3 and DU145 cells, with or without TGF-ß1 treatment. Sinularin inhibited epithelialmesenchymal transition (EMT) in DU145 cells after 48 h of treatment by regulating the protein expression levels of Ecadherin, N-cadherin, and vimentin. Sinularin induced apoptosis, autophagy, and ferroptosis by regulating the protein expression levels of Beclin-1, LC3B, NRF2, GPX4, PARP, caspase-3, caspase-7, caspase-9, cleaved-PARP, Bcl-2, and Bax. Moreover, intracellular reactive oxygen species (ROS) were increased but glutathione was decreased after sinularin treatment in PC3, DU145 and LNCaP cells. CONCLUSION: Sinularin regulated the androgen receptor signaling pathway and triggered apoptosis, autophagy, and ferroptosis in prostate cancer cells. In conclusion, the results indicated that sinularin may be a candidate agent for human prostate cancer and need further study for being applied to human.


Subject(s)
Ferroptosis , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Apoptosis , Oxidative Stress , Cell Proliferation , Autophagy
6.
Oncol Lett ; 23(6): 187, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35527779

ABSTRACT

6-Gingerol is a bioactive compound isolated from Zingiber officinale. 6-Gingerol has been shown to have anticancer effects in numerous types of cancer cell. The mechanisms underlying the anticancer effect of 6-Gingerol in prostate cancer requires investigation. In the present study, the effect on cell viability of 6-Gingerol on LNCaP, PC3 and DU145 prostate cancer cells were determined using the MTT and colony formation assays. 6-Gingerol significantly inhibited cell migration, adhesion and invasion in LPS-stimulated and LPS-unstimulated prostate cancer cells. Furthermore, these changes were accompanied by alterations in the protein expression levels of epithelial-mesenchymal transition biomarkers, including E-cadherin, N-cadherin, Vimentin and zonula occludens-1. 6-Gingerol also induced autophagy by significantly increasing LC3B-II and Beclin-1 protein expression levels in prostate cancer cells. Combining 6-Gingerol with LY294002, an autophagy inhibitor, significantly increased cell survival in DU145 cells. Furthermore, 6-Gingerol significantly decreased the protein expression levels of glutathione (GSH) peroxidase 4 and nuclear factor erythroid 2-related factor 2 in prostate cancer cells. Reactive oxygen species (ROS) levels were significantly increased but GSH levels were decreased following 6-Gingerol treatment in prostate cancer cells. Co-treatment with the ferroptosis inhibitor, ferrostatin-1, significantly increased cell viability and significantly decreased ROS levels in 6-Gingerol-treated cells. These results suggested that 6-Gingerol may have inhibited prostate cell cancer viability via the regulation of autophagy and ferroptosis. In addition, 6-Gingerol inhibited cell migration, adhesion and invasion via the regulation of EMT-related protein expression levels in LPS-stimulated and LPS-unstimulated prostate cancer cells. In conclusion, 6-Gingerol may induce protective autophagy, autophagic cell death and ferroptosis-mediated cell death in prostate cancer cells. These findings may provide a strategy for the treatment and prevention of prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...