Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 147: 111837, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33212213

ABSTRACT

Toll-like receptor 4 (TLR4) is an important mediator of hypertension and AngII induced cardiac inflammation and remodelling. In this study, the potential of nerolidol to ameliorate hypertension induced cardiac injuries and the underlying mechanism of action was explored by using in vitro and in vivo models. The in vitro analysis was performed on AngII challenged H9c2 cells and their ability to overcome cardiac inflammation and cardiac remodelling effects was determined by evaluating TLR4/NF-κB signalling cascade using Western blot analysis and immunofluorescence. The results were further ascertained using in vivo experiments. Eighteen week old male rats were randomly allocated into different groups i.e. Wistar Kyoto (WKY) rats, hypertensive SHRs, SHRs treated with a low-dose (75 mg/kg b.w) and high-dose of nerolidol (150 mg/kg b.w) and SHRs treated with captopril (50 mg/kg b.w) through oral gauge and finally analysed through echocardiography, histopathological techniques and molecular analysis. The results show that nerilodol target TLR4/NF-κB signalling and thereby attenuate hypertension associated inflammation and oxidative stress thereby provides effective cardioprotection. Echocardiography analysis showed that nerolidol improved cardiac functional characteristics including Ejection Fraction and Fractional Shortening in the SHRs. Collectively, the data of the study demonstrates nerolidol as a cardio-protective agent against hypertension induced cardiac remodelling.


Subject(s)
Heart Diseases/prevention & control , Inflammation/prevention & control , NF-kappa B/metabolism , Sesquiterpenes/pharmacology , Toll-Like Receptor 4/metabolism , Angiotensin II/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Heart Diseases/metabolism , Male , Models, Molecular , Molecular Structure , NF-kappa B/genetics , Protein Conformation , Rats, Inbred SHR , Rats, Inbred WKY , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/genetics
2.
Free Radic Biol Med ; 160: 141-148, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32745770

ABSTRACT

Doxorubicin (DOX) is a widely used antitumor drug that causes severe neurotoxicity in patients. Diallyl trisulfide (DATS) is an organosulfur compound with established potent antioxidant and anti-inflammatory properties. Herein, we investigated the neuroprotective efficacy of DATS in preventing DOX-induced neurotoxicity in a rat model. Specifically, DATS (40 mg/kg) was administered to rats 24 h after DOX treatment, once a week for 8 weeks. Our results showed that DATS treatment led to a decrease in plasma levels of tumor necrosis factor-alpha (TNF-α) induced by DOX. DATS restored cerebral cortex and hippocampus histopathological architecture and neuronal loss. Immunohistochemical staining indicated that DATS decreased the expression of glial fibrillar acidic protein (GFAP) in DOX treated rats. Components of stress-related inflammatory proteins (TNF-α, phospho nuclear factor kappa B (NF-κB), inducible nitricoxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) were all significantly increased in the DOX group, in comparison with the control group, whereas they were decreased after DATS treatment. In addition, the mRNA of antioxidant enzymes (superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1, 4 (GPx1 and GPx4)) and antioxidant proteins (heme oxygenase-1 (HO-1), superoxide dismutase 1, 2 (SOD1 and SOD2), Γ-glutamylcysteine synthase (Γ-GCSc)) were markedly increased in DOX group compared with the control group, which were significantly attenuated by DATS treatment. The upregulation of antioxidants enzymes in DOX group was probably a compensatory effect against elevated oxidative stress induced by DOX. DATS treatment could ameliorate this oxidative stress in brain. Our results suggested that DATS has potential clinical applications in the prevention of DOX-induced neurotoxicity by ameliorating inflammatory insults and oxidative stress.


Subject(s)
Allyl Compounds , Antibiotics, Antineoplastic , Apoptosis , Doxorubicin , Oxidative Stress , Sulfides , Allyl Compounds/pharmacology , Animals , Antibiotics, Antineoplastic/toxicity , Antioxidants , Brain , Doxorubicin/toxicity , Humans , Inflammation , Oxidative Stress/drug effects , Rats , Sulfides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...