Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 220: 1-10, 2024 May.
Article in English | MEDLINE | ID: mdl-38104713

ABSTRACT

Cholesterol oxidases (ChOxes) are enzymes that catalyze the oxidation of cholesterol to cholest-4-en-3-one. These enzymes find wide applications across various diagnostic and industrial settings. In addition, as a pathogenic factor of several bacteria, they have significant clinical implications. The current classification system for ChOxes is based on the type of bond connecting FAD to the apoenzyme, which does not adequately illustrate the enzymatic and structural characteristics of these proteins. In this study, we have adopted an integrative approach, combining evolutionary analysis, classic enzymatic techniques and computational approaches, to elucidate the distinct features of four various ChOxes from Rhodococcus sp. (RCO), Cromobacterium sp. (CCO), Pseudomonas aeruginosa (PCO) and Burkhoderia cepacia (BCO). Comparative and evolutionary analysis of substrate-binding domain (SBD) and FAD-binding domain (FBD) helped to reveal the origin of ChOxes. We discovered that all forms of ChOxes had a common ancestor and that the structural differences evolved later during divergence. Further examination of amino acid variations revealed SBD as a more variable compared to FBD independently of FAD coupling mechanism. Revealed differences in amino acid positions turned out to be critical in determining common for ChOxes properties and those that account for the individual differences in substrate specificity. A novel look with the help of chemical descriptors on found distinct features were sufficient to attempt an alternative classification system aimed at application approach. While univocal characteristics necessary to establish such a system remain elusive, we were able to demonstrate the substrate and protein features that explain the differences in substrate profile.


Subject(s)
Bacterial Proteins , Cholesterol Oxidase , Substrate Specificity , Cholesterol Oxidase/chemistry , Cholesterol Oxidase/metabolism , Cholesterol Oxidase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Rhodococcus/enzymology , Pseudomonas aeruginosa/enzymology , Evolution, Molecular , Amino Acid Sequence , Protein Domains , Flavin-Adenine Dinucleotide/metabolism , Flavin-Adenine Dinucleotide/chemistry , Phylogeny
2.
Vaccines (Basel) ; 11(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37376403

ABSTRACT

The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study.

3.
Front Immunol ; 13: 965446, 2022.
Article in English | MEDLINE | ID: mdl-36189235

ABSTRACT

The COVID-19 pandemic not only resulted in a global crisis, but also accelerated vaccine development and antibody discovery. Herein we report a synthetic humanized VHH library development pipeline for nanomolar-range affinity VHH binders to SARS-CoV-2 variants of concern (VoC) receptor binding domains (RBD) isolation. Trinucleotide-based randomization of CDRs by Kunkel mutagenesis with the subsequent rolling-cycle amplification resulted in more than 1011 diverse phage display library in a manageable for a single person number of electroporation reactions. We identified a number of nanomolar-range affinity VHH binders to SARS-CoV-2 variants of concern (VoC) receptor binding domains (RBD) by screening a novel synthetic humanized antibody library. In order to explore the most robust and fast method for affinity improvement, we performed affinity maturation by CDR1 and CDR2 shuffling and avidity engineering by multivalent trimeric VHH fusion protein construction. As a result, H7-Fc and G12x3-Fc binders were developed with the affinities in nM and pM range respectively. Importantly, these affinities are weakly influenced by most of SARS-CoV-2 VoC mutations and they retain moderate binding to BA.4\5. The plaque reduction neutralization test (PRNT) resulted in IC50 = 100 ng\ml and 9.6 ng\ml for H7-Fc and G12x3-Fc antibodies, respectively, for the emerging Omicron BA.1 variant. Therefore, these VHH could expand the present landscape of SARS-CoV-2 neutralization binders with the therapeutic potential for present and future SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Pandemics , Peptide Library , SARS-CoV-2/genetics
4.
Appl Microbiol Biotechnol ; 106(13-16): 5093-5103, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35723693

ABSTRACT

Nanobodies (VHH) from camelid antibody libraries hold great promise as therapeutic agents and components of immunoassay systems. Synthetic antibody libraries that could be designed and generated once and for various applications could yield binders to virtually any targets, even for non-immunogenic or toxic ones, in a short term. One of the most difficult tasks is to obtain antibodies with a high affinity and specificity to polyglycosylated proteins. It requires antibody libraries with extremely high functional diversity and the use of sophisticated selection techniques. Here we report a development of a novel sandwich immunoassay involving a combination of the synthetic library-derived VHH-Fc fusion protein as a capture antibody and the immune single-chain fragment variable (scFv) as a tracer for the detection of pregnancy-associated glycoprotein (PAG) of cattle (Bos taurus). We succeeded in the generation of a number of specific scFv antibodies against PAG from the mouse immune library. Subsequent selection using the immobilized scFv-Fc capture antibody allowed to isolate 1.9 nM VHH binder from the diverse synthetic library without any overlapping with the capture antibody binding site. The prototype sandwich ELISA based on the synthetic VHH and the immune scFv was established. This is the first successful example of the combination of synthetic and immune antibody libraries in a single sandwich immunoassay. Thus, our approach could be used for the express isolation of antibody pairs and the development of sandwich immunoassays for challenging antigens. KEY POINTS: • Heavily glycosylated PAG Bos Taurus were used for immune library construction and specific scFv isolation by phage display. • Nanomolar affinity VHH for PAG was selected from the original synthetic nanobodies library. • A novel VHH/scFv-based immunoassay for Bos Taurus pregnancy determination was developed.


Subject(s)
Single-Chain Antibodies , Single-Domain Antibodies , Animals , Cattle , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay/methods , Female , Glycoproteins , Mice , Peptide Library , Pregnancy , Single-Chain Antibodies/genetics
5.
J Steroid Biochem Mol Biol ; 205: 105777, 2021 01.
Article in English | MEDLINE | ID: mdl-33157220

ABSTRACT

Cytochromes P450 are key enzymes for steroid hormone biosynthesis in human body. They are considered as targets for the screening of novel high efficient drugs. The results of screening of bile acids and androstane derivatives toward human recombinant steroid 17α-hydroxylase/17,20-lyase (CYP17A1) are presented in this paper. A group of steroids, binding with micromolar or submicromolar affinity (in a range from 9 µM - less than 0.1 µM), was identified. Results presented here showed that these steroidal compounds are able to decrease rate of hydroxylation of essential CYP17A1 substrate - progesterone, while some compounds completely inhibited enzyme activity. Structure-activity relationship (SAR) analysis based on in vitro and in silico studies showed that high affinity of the enzyme to bile acids derivatives is correlated with side chain hydrophobicity and presence of hydroxyl or keto group at C3 position. From the other side, bile acid-derived compounds with more polar side chain or substituents at C7 and C12 positions possess higher Kd values. Among androstane-derived steroids couple of Δ5-steroids with hydroxyl group at C3 position, as well as 16,17-secosteroids, were found to be high affinity ligands of this enzyme. The data obtained could be useful for the design of novel highly efficient inhibitors of CYP17A1, since the bile acids-derived compounds are for first time recognized as effective CYP17A1 inhibitors.


Subject(s)
Androstanes/chemistry , Bile Acids and Salts/chemistry , Cytochrome P-450 Enzyme Inhibitors/chemistry , Steroid 17-alpha-Hydroxylase/chemistry , Androstanes/pharmacology , Bile Acids and Salts/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Humans , Ligands , Progesterone/genetics , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Steroid 17-alpha-Hydroxylase/genetics , Structure-Activity Relationship
6.
Appl Microbiol Biotechnol ; 103(21-22): 9103-9117, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31515595

ABSTRACT

Synthesis of custom de novo DNA sequences is highly demanded by fast-growing field of synthetic biology. Usually DNA sequences with length more than 1 kb are assembled from smaller synthetic DNA fragments (synthons) obtained by PCR assembly. The ability to synthesize longer synthons sufficiently reduces efforts and time for DNA synthesis. We developed a novel rational oligonucleotide design and programmed approach for the assembly of synthetic DNA synthons up to 1550 bp. The developed procedure was thoroughly investigated by synthesis of cholesterol oxidase gene from Streptomyces lavendulae (1544 bp). Our approach is based on combined design, oligonucleotide concentration gradient, and specialized assembly program that directs assembly reaction to full-length gene in a stepwise manner. The process includes conventional thermodynamically balanced assembly, thermodynamically balanced inside-out elongation, and further amplification. The ability of DNA polymerase to perform programmed assembly is highly influenced by the presence of 5' → 3'-exonuclease activity. Oligonucleotide probing of PCR assembly products allowed us to shed light on the nature of high molecular weight spurious by-products and to understand the mechanism of their formation. For the first time, we applied light scattering techniques for tracking of oligonucleotide annealing, analysis of gene assembly products, and even for real-time monitoring of gene assembly process.


Subject(s)
DNA/chemical synthesis , Synthetic Biology/methods , Bacterial Proteins/genetics , DNA/chemistry , DNA/genetics , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/genetics , Online Systems , Polymerase Chain Reaction , Streptomyces/enzymology , Streptomyces/genetics , Synthetic Biology/instrumentation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...