Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 330: 111636, 2023 May.
Article in English | MEDLINE | ID: mdl-36791961

ABSTRACT

Camelina (Camelina sativa) is an emerging industrial oilseed crop because of its potential for double cropping, fallow year production, growth on marginal lands, and multiple uses of seed oils and meals. To realize the potential for sustainable production of camelina, a better understanding of how camelina seed oil production and composition respond to low input environments is desired. Phosphorus (P) is one of the least available essential macronutrients to plants with finite worldwide supply. This study investigated seed oil production and lipid composition of camelina in field settings and under greenhouse conditions in response to P deficiency. Lipidomic profiling reveals that P deficiency in field settings triggered extensive leaf lipid remodeling that decreased the ratio of phospholipids to non-P-containing galactolipids from 30% to 5% under P sufficient to deficient conditions. P deficiency increased seed oil content per seed weight by approximately 25% and 20% in field and greenhouse settings, respectively. In addition, P deficiency altered seed fatty acid composition, with increases in monounsaturated 18:1 and 20:1 and decreases in polyunsaturated 18:3. Total seed production was decreased by 10- to 15-fold under P deficiency and the decrease resulted from reduced seed numbers without affecting seed weight. The results from field and greenhouse conditions indicate that P deficiency increases seed oil content, alters fatty acid composition, and decreases greatly seed production, suggesting that achieving a high yield and quality of camelina seed oil is positively linked to P status of soil.


Subject(s)
Brassicaceae , Plant Oils , Seeds , Fatty Acids , Phosphates
2.
Plants (Basel) ; 10(3)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799873

ABSTRACT

Timing of micronutrient demand and acquisition by maize (Zea mays L.) is nutrient specific and associated with key vegetative and reproductive growth stages. The objective of this study was to determine the fate of foliar-applied B, Fe, Mn, Zn, and Fe/Zn together, evaluate the effect of foliar micronutrients applied at multiple rates and growth stages on maize grain yield, and determine their apparent nutrient recovery efficiency (ANR). Five Randomized Complete Block Design (RCBD) experiments were conducted in 2014 and 2015 at five locations across Nebraska. Total dry matter was collected at 5-6 stages, and separated into leaves, stalk, and reproductive tissue as appropriate to determine micronutrient uptake, partitioning, and translocation. Foliar B, Mn, Zn, and Fe/Zn had no effect on grain yield for most application time by rate levels, though, at the foliar Mn site, there was a 19% yield increase due to a V18 application of 0.73 kg Mn ha-1 which corresponded with reduced Mn uptake in maize grown in control plots. At the foliar Zn site, there was 4.5% decrease in yield due to a split foliar application of 0.84 kg Zn ha-1 total, applied at V11 and V15 stage, which increased leaf Zn concentrations greater than the established toxic level. Only the Fe site had consistent grain yield response and was the only experiment that had visual signs of micronutrient deficiency. Regardless of application time from V6 to R2, there was a 13.5-14.6% increase in grain yield due to 0.22 kg Fe ha-1 foliar application. Most micronutrients had limited or no translocation, however, early season applications of B, prior to V10, had significant mobilization to reproductive tissues at or after VT. Foliar Mn, Zn, and B application had ANR LSmeans of 9.5, 16.9, and 2.5%, respectively, whereas the Fe/Zn mix had negative ANR LSmeans of -9.1% Fe and -1.3% Zn which indicate suppression. These data highlight the importance of confirming a micronutrient deficiency prior to foliar application, guide specific growth stages to target with specific micronutrients, track the fate of foliar-applied micronutrients, and describe the variable effect of foliar-applied micronutrients on grain yield.

3.
J Hazard Mater ; 324(Pt B): 436-447, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27836408

ABSTRACT

Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8-86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17ß-estradiol, estrone, estriol, testosterone, and α-zearalenol at concentrations ranging up to 100-200ngL-1. Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall.


Subject(s)
Fertilizers , Manure , Steroids/analysis , Water Pollutants, Chemical/analysis , Zeranol/analogs & derivatives , Agriculture/methods , Androgens/analysis , Animals , Cattle , Estrogens/analysis , Fertilizers/analysis , Manure/analysis , Rain , Time Factors , Zeranol/analysis
4.
J Environ Qual ; 43(3): 995-1003, 2014 May.
Article in English | MEDLINE | ID: mdl-25602828

ABSTRACT

The relationship between inorganic fertilization and soil aggregation is not well understood. We studied cumulative nitrogen (N) fertilization impacts on aggregation, soil organic C (SOC), pH, and their relationships under irrigated and rainfed experiments in Nebraska after 27 and 28 yr, respectively. The dominant soil series were Crete silt loam at the irrigated site, and Coleridge silty clay loam at the rainfed site. We studied irrigated continuous corn ( L.) in chisel plow (CP) and ridge till (RidgeT) receiving 0, 75, 150, and 300 kg N ha yr and rainfed continuous corn and corn-soybean [ (L.) Merr.] in moldboard plow (MP), reduced till (RT), and no-till (NT) with corn receiving 0, 80, and 160 kg N ha yr. Fertilization altered soil aggregation in all tillage systems under continuous corn. Mean weight diameter of water-stable aggregates (MWDA) increased in the upper 7.5-cm depth in NT but decreased in the 7.5- to 60-cm depth by 1.5 times with N application. Fertilization reduced pH but had little or no effect on SOC. Both MWDA and pH ( = 0.47***) decreased under irrigated corn, particularly in the 7.5- to 30-cm depth. No-till and RT had two to five times greater near-surface MWDA than MP. Continuous corn had greater MWDA than corn-soybean in the upper 30-cm depth except in MP. Long-term N fertilization improves near-surface soil aggregation in NT continuous corn but reduces aggregation in the subsoil. Results also suggest that, if fertilizers are applied at rates of about 80 kg N ha, deterioration of soil aggregation would be minimal.

5.
J Environ Qual ; 42(4): 1159-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24216367

ABSTRACT

In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary detected as estrone), androgens, progesterone, and the fusarium metabolite and implant α-zearalanol was monitored in manure compost piles. First-order decay rates were calculated for steroid half-lives in compost and ranged from 8 d for androsterone to 69 d for 4-androstenedione. Other steroid concentration data could not be fit to first-order decay models, which may indicate that microbial processes may result in steroid production or synthesis in composting systems. We demonstrate that composting is an effective strategy to remove steroid hormones from manure. Total steroid hormone removal in composted beef cattle manure ranged from 79 to 87%.


Subject(s)
Manure , Red Meat , Animals , Cattle , Soil , Temperature
6.
Environ Sci Technol ; 46(3): 1352-60, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22242694

ABSTRACT

Supplements and growth promotants containing steroid hormones are routinely administered to beef cattle to improve feeding efficiency, reduce behavioral problems, and enhance production. As a result, beef cattle manure will contain both synthetic steroids as well as a range of endogenous steroids including androgens, estrogens, and progestogens. A two-year controlled study was conducted in which beef cattle were administered steroid hormones via subcutaneous implants and feed additives and the occurrence of 16 endogenous and synthetic steroid hormones and metabolites was evaluated in runoff from beef cattle feedlots and in manure and soil collected from feedlot surfaces. Samples were extracted and analyzed using liquid chromatography tandem mass spectrometryfor metabolites of the synthetic androgen trenbolone acetate, 17α-trenbolone, 17ß-trenbolone, for the nonsteroidal semisynthetic estrogen agonist, α-zearalanol, and the synthetic progesterone melengesterol acetate, as well as a wide range of endogeneous estrogens, androgens, and fusarium metabolites. Synthetic steroids including trenbolone metabolites and melengestrol acetate were detected in fresh manure and in feedlot surface soils from cattle administered synthetic steroids at concentrations up to 55 ± 22 ng/g dry weight (dw) (17α-trenbolone) and 6.5 ± 0.4 ng/g dw (melengesterol acetate). Melengesterol acetate was detected in 6% of runoff samples from feedlots holding cattle administered synthetic steroids at concentrations ranging up to 115 ng/L. The presence of melengesterol acetate in runoff from beef cattle feeding operations has not been previously reported. Synthetic steroids were not detected in manure or runoff from control cattle. A wide range of endogenous hormones were detected in runoff and feedlot surface soils and manure from cattle given synthetic steroids and from control cattle, with no statistically significant differences in concentration. These results indicate that runoff from confined animal production facilities is of environmental and public health concern regardless of the use of growth promotants.


Subject(s)
Agriculture/methods , Dietary Supplements/analysis , Environmental Monitoring/statistics & numerical data , Gonadal Steroid Hormones/analysis , Manure/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Animals , Cattle , Chromatography, Liquid , Environmental Monitoring/methods , Gonadal Steroid Hormones/agonists , Growth Substances/analysis , Melengestrol Acetate/analysis , Tandem Mass Spectrometry , Trenbolone Acetate/analysis , Zeranol/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...