Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 299(3): 615-28, 2000 Jun 09.
Article in English | MEDLINE | ID: mdl-10835272

ABSTRACT

Initiation factor 3 (IF3) acts to switch the decoding preference of the small ribosomal subunit from elongator to initiator tRNA. The effects of IF3 on the 30 S ribosomal subunit and on the 30 S.mRNA. tRNA(f)(Met) complex were determined by UV-induced RNA crosslinking. Three intramolecular crosslinks in the 16 S rRNA (of the 14 that were monitored by gel electrophoresis) are affected by IF3. These are the crosslinks between C1402 and C1501 within the decoding region, between C967xC1400 joining the end loop of a helix of 16 S rRNA domain III and the decoding region, and between U793 and G1517 joining the 790 end loop of 16 S rRNA domain II and the end loop of the terminal helix. These changes occur even in the 30 S.IF3 complex, indicating they are not mediated through tRNA(f)(Met) or mRNA. UV-induced crosslinks occur between 16 S rRNA position C1400 and tRNA(f)(Met) position U34, in tRNA(f)(Met) the nucleotide adjacent to the 5' anticodon nucleotide, and between 16 S rRNA position C1397 and the mRNA at positions +9 and +10 (where A of the initiator AUG codon is +1). The presence of IF3 reduces both of these crosslinks by twofold and fourfold, respectively. The binding site for IF3 involves the 790 region, some other parts of the 16 S rRNA domain II and the terminal stem/loop region. These are located in the front bottom part of the platform structure in the 30 S subunit, a short distance from the decoding region. The changes that occur in the decoding region, even in the absence of mRNA and tRNA, may be induced by IF3 from a short distance or could be caused by the second IF3 structural domain.


Subject(s)
Escherichia coli , Peptide Initiation Factors/metabolism , RNA, Messenger/metabolism , RNA, Transfer, Met/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Alkalies/metabolism , Anticodon/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , Binding Sites/radiation effects , Escherichia coli/chemistry , Escherichia coli/genetics , Hydrolysis , Models, Molecular , Nucleic Acid Conformation , Peptide Initiation Factors/chemistry , Prokaryotic Initiation Factor-3 , Protein Binding/radiation effects , Protein Structure, Tertiary , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , RNA, Transfer, Met/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomes/genetics , Transcription, Genetic/genetics , Ultraviolet Rays
2.
J Biol Chem ; 270(21): 12794-800, 1995 May 26.
Article in English | MEDLINE | ID: mdl-7759534

ABSTRACT

The interaction between mRNA and Escherichia coli ribosomes has been studied by photochemical cross-linking using mRNA analogues that contain 4-thiouridine (s4U) or s4U modified with azidophenylacyl bromide (APAB), either two nucleotides upstream or eight nucleotides downstream from the nucleotide sequence ACC, the codon for tRNA(Thr). The sequences of the mRNA analogues were described earlier (Stade, K., Rinke-Appel, J., and Brimacombe, R. (1989) Nucleic Acids Res. 17, 9889-9908; Rinke-Appel, J., Stade, K., and Brimacombe, R. (1991) EMBO J. 10, 2195-2202). Under equilibrium conditions, both of these mRNA analogues bind and cross-link to 70 S ribosomes without the presence of tRNA(Thr); however, there are significant increases both in binding and particularly in cross-linking in the presence of the tRNA(Thr). Four regions contain cross-linking sites that increase in the presence of tRNA, C1395, A532, A1196 (and minor sites around these three positions), and C1533/U1532. Three other cross-linking sites, U723, A845, and U1381, show very little change in extent of cross-linking when tRNA is present. A conformational change in the 30 S subunit allowing additional accessibility to the 16 S rRNA by the mRNA analogues upon tRNA binding best explains the behavior of the tRNA-dependent and tRNA-independent mRNA-16 S rRNA cross-linking sites.


Subject(s)
Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Ribosomal, 16S/metabolism , RNA, Transfer, Thr/metabolism , Ribosomes/metabolism , Base Sequence , Binding Sites , Cross-Linking Reagents , Escherichia coli/metabolism , Hydrolysis , Models, Molecular , Molecular Conformation , Molecular Sequence Data , RNA, Messenger/chemistry , Ribonuclease H/metabolism , Thiouridine , Transcription, Genetic
3.
Biochimie ; 74(5): 411-7, 1992 May.
Article in English | MEDLINE | ID: mdl-1322179

ABSTRACT

AcPhe2-tRNA(Phe) which appears in ribosomes after consecutive binding of AcPhe-tRNA(Phe) at the P sites and EF-Tu-directed binding of Phe-tRNA(Phe) at the A sites is able to react quantitatively with puromycin in the absence of EF-G. One could readily explain this fact to be the consequence of spontaneous translocation. However, a detailed study of kinetics of puromycin reaction carried out with the use of viomycin (inhibitor of translocation) and the P-site test revealed that, apart from spontaneous translocation, this peptidyl-tRNA could react with puromycin being located at the A site. This leads to the conclusion that the transpeptidation reaction triggers conformational changes in the A-site ribosomal complex bringing the 3'-end of a newly synthesized peptidyl-tRNA nearer to the peptidyl site of peptidyltransferase center. This is detected functionally as a highly pronounced ability of such a peptidyl-tRNA to react with puromycin.


Subject(s)
Puromycin/metabolism , RNA, Transfer, Amino Acyl/metabolism , Ribosomes/metabolism , Binding Sites , Kinetics , RNA, Transfer, Amino Acyl/chemistry , Viomycin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...