Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(11): 7933-7945, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38748510

ABSTRACT

A detailed investigation into the mechanistic course of N-hydroxyphthalimide catalyzed oxidation of benzylic centers using sodium chlorite as the stoichiometric oxidant is reported. Through a combination of experimental, spectroscopic, and computational techniques, the transformation is interrogated, providing improved reaction conditions and an enhanced understanding of the mechanism. Performing the transformation in the presence of acetic acid or a pH 4.5 buffer leads to extended reaction times but improves the catalyst lifetime, leading to the complete consumption of the starting material. Chlorine dioxide is identified as the active oxidant that is able to oxidize the N-hydroxyphthalimide anion to the phthalimide-N-oxyl radical, the proposed catalytically active species, which is able to abstract a hydrogen atom from the substrate. A second molecule of chlorine dioxide reacts with the resultant radical and, after loss of hypochlorous acid, leads to the observed product. Through a broad variety of techniques including UV/vis, EPR and Raman spectroscopy, isotopic labeling, and the use of radical traps, evidence for the mechanism is presented that is supported through electronic structural calculations.

2.
Chemistry ; 29(31): e202204007, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36888902

ABSTRACT

The peracid oxidation of hydrocarbons in chlorinated solvents is a low yielding and poorly selective process. Through a combination of DFT calculations, spectroscopic studies, and kinetic measurement it is shown that the origin of this is electronic in nature and can be influenced through the addition of hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA). Performing the reaction of a cycloalkane with mCPBA in a fluorinated alcohol solvent such as nonafluoro-tert-butanol (NFTB) or hexafluoroisopropanol (HFIP), which act as strong HBD and poor HBA, leads to significantly higher yields and selectivities being observed for the alcohol product. Application of the optimised reaction conditions allows for the selective oxidation of both cyclic and linear alkane substrates delivering the corresponding alcohol in up to 86 % yield. The transformation shows selectivity for tertiary centres over secondary centres and the oxidation of secondary centres is strongly influenced by stereoelectronic effects. Primary centres are not oxidised by this method. A simple computational model developed to understand this transformation provides a powerful tool to reliably predict the influence of substitution and functionality on reaction outcome.

3.
Steroids ; 78(12-13): 1281-7, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24075969

ABSTRACT

A six step transformation of prednisolone to 17α,21-dihydroxy-9ß,11ß-epoxy-16α-amethylpregna-1,4-diene-3,20-dione 21-acetate has been achieved in 13% unoptimised yield. Novel conditions for effecting a Mattox rearrangement and double dehydration of prednisolone were identified. Enhanced knowledge on the oxidation of silyl Δ(19,20)-enol ethers and structural factors that impact the success of the oxidation are also presented.


Subject(s)
Glucocorticoids/chemical synthesis , Prednisolone/analogs & derivatives , Prednisolone/chemistry , Oxidation-Reduction , Prednisolone/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...