Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(20): 5301-5304, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37831852

ABSTRACT

The reflective and structural parameters of Be/Si/Al multilayer mirrors have been studied. The extent of stability of their X-ray optical characteristics has been demonstrated during storage in air for 4 years and during vacuum annealing at temperatures up to 100°C. A high reflectance of 62.5% was obtained, together with a spectral selectivity of λ/Δλ≈59 at a wavelength of 17.14 nm and 34%, with λ/Δλ ≈ 31 at a wavelength of 31.3 nm. It was shown that Si interlayers reduce the interlayer roughness from 0.45 to 0.20 nm.

2.
Opt Express ; 30(11): 19332-19342, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221714

ABSTRACT

The results of the investigation of the reflective characteristics of multilayer mirrors based on Ru/Y are presented. Reflection coefficients at the level of 38.5% at an operating wavelength of 9.4 nm. It is shown that the deposition of B4C barrier layers onto Y layers makes it possible to significantly increase the reflection coefficient compared to structures without barrier layers. A reflectance of 54% was obtained for mirrors optimized for 11.4 nm, which is close to the theoretical limit for these materials.

3.
Opt Lett ; 47(17): 4351-4354, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048651

ABSTRACT

The results of investigations of Ru/Sr multilayer coatings optimized for the spectral range of 9-12 nm are presented in this Letter. Such mirrors are promising optical elements for solar astronomy and for the development of beyond extreme ultraviolet (BEUV) lithography. A near-normal incidence reflectivity of up to 62.3% (λ = 11.4 nm) right after the synthesis is measured. The reflection coefficient decreases to 56.8% after five days of storage in air with a subsequent stabilization of its value. At a wavelength of λ = 9.34 nm, the reflection coefficient is 48.6% after two months of storage in air. To date, to the best of our knowledge, this is the highest reflectivity measured in this spectral range. The possibility of further increasing the reflectivity is discussed.

5.
Rev Sci Instrum ; 91(1): 013514, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012520

ABSTRACT

This paper presents a study of plasma flux characteristics flowing out from the gas-dynamic mirror trap along the magnetic field lines to a metal wall. The main feature of the current work is that the effect of ion acceleration by ambipolar potential is considered in the expander region. The developed model also takes into account a possibility of transition from the collisional expansion of electron flow in the vicinity of the magnetic plug to the collisionless regime. The developed model allows calculation of the ambipolar potential profile and plasma characteristics in the expander region.

6.
Rev Sci Instrum ; 91(1): 013331, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012579

ABSTRACT

The paper presents recent results of a "pointlike" neutron source development based on a D-D fusion in a D-loaded target caused by its bombardment with a sharply focused deuterium ion beam. These developments are undergoing at the Institute of Applied Physics of Russian Academy of Sciences in order to study a possibility to create an effective and compact device for fast-neutron radiography. The last experiments with a beam produced by a gasdynamic high-current ECR ion source and its focusing with a magnetic lens demonstrated that 60 mA of deuterium ions may be constricted to a transversal size of ∼1 mm at the focal plane. With a purpose to improve this result in terms of the beam current and its size, a combined electrostatic and magnetic focusing system is proposed and analyzed. It is shown that the combined system may enhance the total beam current and reduce its footprint down to 0.13 mm. All numerical analysis was performed using the IBSimu code.

7.
Rev Sci Instrum ; 91(1): 013517, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012642

ABSTRACT

Negative hydrogen ion sources are used as injectors into accelerators and drive the neutral beam heating in ITER. Certain processes in low-temperature hydrogen plasmas are accompanied by the emission of vacuum ultraviolet (VUV) emission. Studying the VUV radiation, therefore, provides volumetric rates of plasma-chemical processes and plasma parameters. In the past, we have used gasdynamic ECR discharge for volumetric negative ion production and investigated the dependencies between the extracted H- current density and various ion source parameters. It was shown that it is possible to reach up to 80 mA/cm2 of negative ion current density with a two electrode extraction. We report experimental studies on negative hydrogen ion production in a high-density gasdynamic ECR discharge plasma consisting of two simple mirror traps together with the results of VUV emission measurements. The VUV-power was measured in three ranges-Lyα, Lyman band, and molecular continuum-varying the source control parameters near their optima for H- production. It was shown that the molecular continuum emission VUV power is the highest in the first chamber while Lyα emission prevails in the second one. Modifications for the experimental scheme for further optimization of negative hydrogen ion production are suggested.

8.
Rev Sci Instrum ; 90(12): 123511, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893772

ABSTRACT

Results of experimental investigation of the ECR discharge in a single coil magnetic field as an alternative to rf and helicon discharges for wide-aperture dense plasma fluxes production are presented. A possibility of obtaining wide-aperture high density hydrogen plasma fluxes with homogeneous transverse distribution was demonstrated in such a system. The prospects of using this system for obtaining high current ion beams are discussed.

9.
Rev Sci Instrum ; 90(12): 123308, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893846

ABSTRACT

A new experimental facility named GISMO (Gasdynamic Ion Source for Multipurpose Operation) was constructed at the IAP RAS to continue investigations in the field of gasdynamic ion sources. The source utilizes 28 GHz/10 kW gyrotron radiation for heating magnetically confined plasma. Magnetic field configuration provided by a fully permanent magnet system is much like a simple mirror trap. The GISMO source is aimed at the production of bright ion beams with hundreds of milliamperes current. The facility has been tested for continuous-wave (CW) operation with 2 kW of heating power to check durability of a microwave injection system and the plasma chamber. A 2-electrode extraction system with an integrated Einzel lens was designed for a formation of CW high current beam with up to 100 kV accelerating voltage. The first results on ion beam production at GISMO are presented together with the general progress status of the facility.

SELECTION OF CITATIONS
SEARCH DETAIL
...