Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Assist Reprod Genet ; 40(1): 83-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515800

ABSTRACT

PURPOSE: Developing optimized techniques for the isolation of human spermatozoa possessing low levels of DNA damage is an important objective for the ART industry. The purpose of this study was to compare a novel electrophoretic system (Felix™) of sperm isolation with a conventional method involving density gradient centrifugation (DGC). METHODS: Five international ART Centres in Australia, India, Sweden, the USA, and China have collaborated in order to compare the quality of the sperm populations isolated by Felix™ and DGC in terms of processing time, sperm concentration, motility, vitality, and DNA integrity as assessed by 3 methods: SCSA, Halo, and TUNEL. RESULTS: Across all centers, 112 comparisons were performed. Although significant differences were noted between centers in terms of the quality of the semen samples subjected for analysis, overall, both methods were equally capable of isolating populations of spermatozoa exhibiting high levels of vitality and progressive motility. The absolute numbers of spermatozoa recovered were significantly (p < 0.001) lower with the Felix™ device although sperm quality was higher with 4/5 centers reporting a significant improvement in DNA integrity relative to DGC (p < 0.01-p < 0.001). In practical terms, the Felix™ device featured a standardized 6 min preparation time whereas clinical DGC protocols varied from center to center but generally took around 40 min to complete. CONCLUSIONS: The Felix™ device is a positive technical development capable of isolating suspensions of highly motile spermatozoa exhibiting low levels of DNA damage in a fraction of the time taken by conventional procedures such as DGC.


Subject(s)
Semen , Sperm Motility , Humans , Male , Cell Separation/methods , Centrifugation, Density Gradient/methods , Spermatozoa , DNA
2.
PLoS One ; 13(1): e0190925, 2018.
Article in English | MEDLINE | ID: mdl-29324788

ABSTRACT

ESRP1 regulates alternative splicing, producing multiple transcripts from its target genes in epithelial tissues. It is upregulated during mesenchymal to epithelial transition associated with reprogramming of fibroblasts to iPS cells and has been linked to pluripotency. Mouse fetal germ cells are the founders of the adult gonadal lineages and we found that Esrp1 mRNA was expressed in both male and female germ cells but not in gonadal somatic cells at various stages of gonadal development (E12.5-E15.5). In the postnatal testis, Esrp1 mRNA was highly expressed in isolated cell preparations enriched for spermatogonia but expressed at lower levels in those enriched for pachytene spermatocytes and round spermatids. Co-labelling experiments with PLZF and c-KIT showed that ESRP1 was localized to nuclei of both Type A and B spermatogonia in a speckled pattern, but was not detected in SOX9+ somatic Sertoli cells. No co-localization with the nuclear speckle marker, SC35, which has been associated with post-transcriptional splicing, was observed, suggesting that ESRP1 may be associated with co-transcriptional splicing or have other functions. RNA interference mediated knockdown of Esrp1 expression in the seminoma-derived Tcam-2 cell line demonstrated that ESRP1 regulates alternative splicing of mRNAs in a non-epithelial cell germ cell tumour cell line.


Subject(s)
Germ Cells/metabolism , RNA-Binding Proteins/metabolism , Spermatogenesis/physiology , Testis/growth & development , Testis/metabolism , Alternative Splicing , Animals , Cell Line, Tumor , Cells, Cultured , Female , Gene Expression , Germ Cells/cytology , Male , Mice, Inbred C57BL , RNA, Messenger/metabolism , Testis/cytology
3.
Cell Tissue Res ; 364(2): 443-51, 2016 05.
Article in English | MEDLINE | ID: mdl-26662055

ABSTRACT

Tob1 is a member of the BTG/TOB family of proteins with established antiproliferative function. In Danio rerio and Xenopus laevis, the Tob1 gene is expressed from the one-cell stage through to early gastrula stages, followed in later development by discrete expression in many tissues including the notochord and somites. In both mouse and human, Tob1 is expressed in many adult tissues including the testis and ovary; however, the specific cell types are unknown. We examine Tob1 gene expression in mouse in developing germ cells and in sorted male germ cells (gonocytes, spermatogonia, pachytene spermatocytes and round spermatids) by reverse transcription and droplet digital polymerase chain reaction (RT-ddPCR) and in adult ovary and testis by immunofluorescence with anti-Tob1 protein staining. By RT-ddPCR, Tob1 expression was low in developing male germ cells but was highly expressed in round spermatids. In developing female germ cells undergoing entry into meiosis, it increased 10-fold. Tob1 was also highly expressed in round spermatids and in oocytes in all stages of folliculogenesis. Notably, a marker for P-bodies, Dcp-2, was also highly expressed in round spermatids and all oocyte stages examined. The cytoplasmic presence of Tob1 protein in round spermatids and oocytes and the association of Tob1 protein with Dcp2 in both cell types suggest that Tob1 protein plays a role in post-transcriptional mechanisms.


Subject(s)
Carrier Proteins/biosynthesis , Embryonic Germ Cells/metabolism , Endoribonucleases/biosynthesis , Gene Expression Regulation, Developmental , Oocytes/metabolism , Spermatids/metabolism , Spermatocytes/metabolism , Spermatogonia/metabolism , Animals , Biomarkers/metabolism , Female , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oogenesis/physiology , Ovary/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spermatogenesis/physiology , Testis/metabolism
4.
Int J Fertil Steril ; 7(3): 147-54, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24520479

ABSTRACT

For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy.

5.
Iran J Reprod Med ; 11(11): 919-24, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24639717

ABSTRACT

BACKGROUND: It has been suggested that malfunction of immune system may causes testicular cancer. Recently, our understanding of innate immune system has been expanded, by discovery of "Toll-Like Receptors" (TLRs). Some studies have shown that polymorphisms of TLR2 and 4 may affect on the risk of cancer. Also, the role of TLRs 3 and 9 have been shown in apoptosis and metastasis of cancer cells in animal models. OBJECTIVE: Little information is available about the influence of innate immunity on testicular malignancy. Therefore, expression of TLRs 2, 3, 4 and 9 as main components of innate immunity has been investigated in this study. MATERIALS AND METHODS: In this case control study, TLRs gene expression was examined by RT-PCR in normal testis and testicular cancer tissues. Real time quantitative PCR (Q-PCR) analysis was used to compare the relative expression of TLRs between the samples. RESULTS: mRNAs of TLR 2, 3, 4 and 9 were expressed in all normal and cancer samples. Q-PCR reveals that cancer samples had stronger expression of these genes compared with normal ones. CONCLUSION: It seems that the different TLRs expression in testicular cancer cells may contribute to extensive signaling pathways involved in carcinogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...