Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hematol Oncol Stem Cell Res ; 18(2): 156-164, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38868810

ABSTRACT

Background: Myelodysplastic syndromes (MDS) are determined by ineffective hematopoiesis and bone marrow cytological dysplasia with somatic gene mutations and chromosomal abnormalities. Accumulating evidence has revealed the pivotal role of NLRP3 inflammasome activation and pyroptotic cell death in the pathogenesis of MDS. Although MDS can be diagnosed with a variety of morphologic and cytogenetic tests, most of these tests have limitations or problems in practice. Materials and Methods: In the present study, we evaluated the expression of genes that form the inflammasome (NLRP3, ASC, and CASP1) in bone marrow specimens of MDS patients and compared the results with those of other leukemias to evaluate their diagnostic value for MDS. Primary samples of this observational cohort study were collected from aspiration samples of patients with myelodysplastic syndromes (27 cases) and patients with non-myelodysplastic syndrome hematological cancers (45 cases). After RNA extraction and c.DNA synthesis, candidate transcripts and housekeeping transcripts were measured by real-time PCR method (SYBER Green assay). Using Kruskal-Wallis the relative gene expressions were compared and differences with p value less than 0.05 were considered as significant. Discrimination capability, cut-off, and area under curve (AUC) of all markers were analyzed with recessive operation curve (ROC) analysis. Results: We found that Caspase-1 and ASC genes expressed at more levels in MDS specimens compared to non-MDS hematological malignancies. A relative average expression of 10.22 with a p-value of 0.001 and 1.86 with p=0.019 was detected for Caspase-1 and ASC, respectively. ROC curve analysis shows an AUC of 0.739 with p=0.0001 for Caspase-1 and an AUC of 0.665 with p=0.0139 for ASC to MDS discrimination. Conclusion: Our results show that Caspase-1 and ASC gene expression levels can be used as potential biomarkers for MDS diagnosis. Prospective studies with large sample numbers are suggested.

2.
BMC Cancer ; 24(1): 125, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267906

ABSTRACT

BACKGROUND: T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS: Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS: The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION: Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.


Subject(s)
Glutamine , Leukemia, Myeloid, Acute , Humans , Glutamic Acid , Hepatitis A Virus Cellular Receptor 2 , HL-60 Cells
3.
Cell Commun Signal ; 21(1): 252, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735675

ABSTRACT

Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow Cells , Cell Proliferation , Signal Transduction , Tumor Microenvironment
5.
Cell Commun Signal ; 20(1): 172, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316776

ABSTRACT

Acute myeloid leukemia (AML) is a type of leukemia with a poor prognosis and survival characterized by abnormal cell proliferation and differentiation. Despite advances in treatment, AML still has a low complete remission rate, particularly in elderly patients, and recurrences are frequently seen even after complete remissions. The major challenge in treating AML is the resistance of leukemia cells to chemotherapy drugs. Thus, to overcome this issue, it can be crucial to conduct new investigations to explore the mechanisms of chemo-resistance in AML and target them. In this review, the potential role of autophagy induced by FLT3-ITD and acid ceramidase in chemo-resistance in AML patients are analyzed. With regard to the high prevalence of FLT3-ITD mutation (about 25% of AML cases) and high level of acid ceramidase in these patients, we hypothesized that both of these factors could lead to chemo-resistance by inducing autophagy. Therefore, pharmacological targeting of autophagy, FLT3-ITD, and acid ceramidase production could be a promising therapeutic approach for such AML patients to overcome chemo-resistance. Video abstract.


Subject(s)
Acid Ceramidase , Leukemia, Myeloid, Acute , Humans , Aged , Acid Ceramidase/genetics , Acid Ceramidase/therapeutic use , Mutation , Leukemia, Myeloid, Acute/drug therapy , Autophagy , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/therapeutic use
6.
Oxid Med Cell Longev ; 2022: 7838583, 2022.
Article in English | MEDLINE | ID: mdl-36193062

ABSTRACT

The permeability of glioblastoma, as well as its escaping the immune system, makes them one of the most deadly human malignancies. By avoiding programmed cell death (apoptosis), unlimited cell growth and metastatic ability could dramatically affect the immune system. Genetic mutations, epigenetic changes, and overexpression of oncogenes can cause this process. On the other hand, the blood-brain barrier (BBB) and intratumor heterogeneity are important factors causing resistance to therapy. Several signaling pathways have been identified in this field, including the Janus tyrosine kinase (JAK) converter and signal transducer and activator of transcription (STAT) activator pathways, which are closely related. In addition, the JAK/STAT signaling pathway contributes to a wide array of tumorigenesis functions, including replication, anti-apoptosis, angiogenesis, and immune suppression. Introducing this pathway as the main tumorigenesis and treatment resistance center can give a better understanding of how it operates. In light of this, it is an important goal in treating many disorders, particularly cancer. The inhibition of this signaling pathway is being considered an approach to the treatment of glioblastoma. The use of natural products alternatively to conventional therapies is another area of research interest among researchers. Some natural products that originate from plants or natural sources can interfere with JAK/STAT signaling in human malignant cells, also by stopping the progression and phosphorylation of JAK/STAT, inducing apoptosis, and stopping the cell cycle. Natural products are a viable alternative to conventional chemotherapy because of their cost-effectiveness, wide availability, and almost no side effects.


Subject(s)
Biological Products , Glioblastoma , Biological Products/pharmacology , Biological Products/therapeutic use , Carcinogenesis , Glioblastoma/drug therapy , Humans , Janus Kinases/metabolism , STAT Transcription Factors/genetics , Signal Transduction
7.
Inflammopharmacology ; 30(5): 1533-1539, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35994216

ABSTRACT

Hesperetin, an aglycone metabolite of hesperidin with high bioavailability, recently gained attention due to its anti-COVID-19 and anti-cancer properties. Multiple studies revealed that cancer patients are prone to experience a severe form of COVID-19 and higher mortality risk. In addition, studies suggested that COVID-19 can potentially lead to cancer progression through multiple mechanisms. This study proposes that hesperetin not only can be used as an anti-COVID-19 agent but also can reduce the risk of multiple cancer progression by suppressing several intracellular signaling pathways in cancer patients with COVID-19. Therefore, in this review, we attempted to provide evidence demonstrating anti-COVID-19/cancer properties of hesperetin with several mechanisms.


Subject(s)
COVID-19 Drug Treatment , Hesperidin , Neoplasms , Hesperidin/pharmacology , Hesperidin/therapeutic use , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...