Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(44): 41054-41063, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970029

ABSTRACT

Poly(vinyl alcohol) (PVA), a naturally occurring and rapidly decomposing polymer, has gained significant attention in recent studies for its potential use in pollution preventive materials. Its cost-effectiveness and ease of availability as well as simple processing make it a suitable material for various applications. However, the only concern about PVA's applicability to various applications is its hydrophilic nature. To address this limitation, PVA-based nanocomposites can be created by incorporating inorganic fillers such as graphene (G). Graphene is a two-dimensional carbon crystal with a single atom-layer structure and has become a popular choice as a nanomaterial due to its outstanding properties. In this study, we present a simple and environmentally friendly solution processing technique to fabricate PVA and graphene-based nanocomposite films. The resulting composite films showed noticeable improvement in barrier properties against moisture, oxygen, heat, and mechanical failures. The improvement of the characteristic properties is attributed to the uniform dispersion of graphene in the PVA matrix as shown in the SEM image. The addition of graphene leads to a decrease in water vapor transmission rate (WVTR) by 79% and around 90% for the oxygen transmission rate (OTR) as compared to pristine PVA films. Notably, incorporating just 0.5 vol % of graphene results in an OTR value of as low as 0.7 cm m-2 day-1 bar-1, making it highly suitable packaging applications. The films also exhibit remarkable flexibility and retained almost the same WVTR values even after going through tough bending cycles of more than 2000 at a bending radius of 2.5 cm. Overall, PVA/G nanocomposite films offer promising potential for PVA/G composite films for various attractive pollution prevention (such as corrosion resistant coatings) and packaging applications.

2.
ACS Omega ; 8(32): 28976-28983, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599914

ABSTRACT

This investigation aims at synthesizing and characterizing a biocomposite of hydroxyapatite (HA) and titanium (Ti) as a functionally graded material (FGM) via an economical powder metallurgy route. Ti particles were produced through drilling and chipping, followed by compaction and sintering. Ti foams, so obtained, were then infused with varying volume fractions of HA. The pure Ti foam control sample and the FGM composite samples were then subjected to various characterizations to validate their biocompatibility, structural strength, and integrity. The interface development between the load-bearing Ti implant and living tissue was resolved through an FGM structure, where the base of the implant consisted of load-bearing Ti and the outer periphery changed to HA gradually. HA/Ti specimens of different volume fractions were tested for density measurements, microstructure, hardness, and bioactivity. The bioactive behavior was investigated using the potentiodynamic polarization technique to measure the corrosion rate of the pure Ti foam (0/100 HA/Ti) and the FGM composite (10/90 HA/Ti) samples in a simulated body fluid (SBF). The results showed that the hardness of FGM composites, despite being less than that of 0/100 HA/Ti, was still within safe limits. The corrosion rate, however, was found to be decreased by a significant value of almost 40% for the 10/90 HA/Ti FGM composite sample compared to the pure Ti foam control sample. It was concluded that the optimum composition 10/90 HA/Ti sample offers improved corrosion resistance while maintaining a sufficient allowable hardness level.

3.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677801

ABSTRACT

Nickel-supported hierarchical zeolite catalysts were prepared through a desilication reassembly process under optimized conditions and applied in one-pot menthol synthesis. In this work, the hierarchical zeolite-supported metal bifunctional catalysts were prepared with the help of desilication re-assembly and wetness impregnation techniques and applied in menthol synthesis via citral hydrogenation. The prepared catalysts were characterized using PXRD, BET, FE-TEM, NH3-TPD, H2-TPR, pyridine adsorption, and ICP-OES techniques. As a result, the physicochemical and acidic properties, such as mesopore surface area, metal dispersion, acidity, catalytic activity, and strong Lewis acid sites of pure microporous ZSM-5/USY zeolites, were significantly improved. Consequently, with the occurrence of superior physicochemical and acidic properties, the Ni/HZ-0.5 M catalyst exhibited outstanding catalytic activity (100% conversion, TOF 7.12 h-1) and menthol selectivity (83%, 4 h) with uniform stability at 100 °C, 1.0 MPa hydrogen. Similarly, the cracking rate decreased with the decrease in Bronsted acid sites.

4.
Polymers (Basel) ; 14(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36433147

ABSTRACT

Starch and gelatin are natural biopolymers that offer a variety of benefits and are available at relatively low costs. In addition to this, they are an appealing substitute for synthetic polymers for the manufacturing of packaging films. Such packaging films are not only biodegradable but are also edible. Moreover, they are environmentally friendly and remain extremely cost-effective. In lieu of this, films made from fish gelatin and cornstarch have been the subject of several experiments. The pristine gelatin films have poor performance against water diffusion but exhibit excellent flexibility. The goal of this study was to assess the performance of pristine gelatin films along with the addition of food plasticizers. For this purpose, solutions of gelatin/cornstarch were prepared and specified quantities of food colors/plasticizers were added to develop different shades. The films were produced by using a blade coating method and were characterized by means of their shaded colors, water vapor transmission rate (WVTR), compositional changes via Fourier transform infrared spectroscopy (FTIR), hardness, bendability, transparency, wettability, surface roughness, and thermal stability. It was observed that the addition of several food colors enhanced the moisture blocking effect, as a 10% reduction in WVTR was observed in the shaded films as compared to pristine films. The yellow-shaded films exhibited the lowest WVTR, i.e., around 73 g/m2·day when tested at 23 °C/65%RH. It was also observed that the films' WVTR, moisture content, and thickness were altered when different colors were added into them, although the chemical structure remained unchanged. The mechanical properties of the shaded films were improved by a factor of two after the addition of colored plasticizers. Optical examination and AFM demonstrated that the generated films had no fractures and were homogeneous, clear, and shiny. Finally, a biscuit was packaged in the developed films and was monitored via shore hardness. It was observed that the edible packed sample's hardness remained constant even after 5 days. This clearly suggested that the developed films have the potential to be used for packaging in various industries.

5.
ACS Omega ; 7(46): 42313-42319, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440109

ABSTRACT

AISI 1045 medium carbon steel sheets having 10 mm thickness were subjected to the shielded metal arc welding process with three, five, and seven passes. The variations in the microstructure due to multiple thermal cycles in the heat-affected zone (HAZ), base metal (BM), and fusion zone (FZ) have been investigated and correlated with measured mechanical properties. Upon comparing fracture mechanics and mechanical properties with microstructural observations, it is elucidated that samples become ductile by increasing the number of thermal cycles which can be attributed to the transformations in the ferrite morphology in the HAZ. Based on mechanical, microstructural, and fracture analysis, it is concluded that post-weld heat treatment can be avoided if the number of passes during welding is increased.

6.
Materials (Basel) ; 15(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363347

ABSTRACT

Natural soil (NS)-based geopolymers (GPs) have shown promise as environmentally friendly construction materials. The production of ordinary Portland cement is known to release significant amounts of greenhouse gas (CO2) into the atmosphere. The main objective of this work is to synthesize a geopolymer (GP) from an uncommon aluminosilicate-based NS and a sodium silicate (SS) activating solution that would not only minimize the emission of harmful gases, but also offer improved mechanical strength. Samples of different compositions were produced by varying the wt.% of NS from 50% to 80% and adding a balancing amount of SS solution. The drying and curing of the samples were carried out in an electric oven at specific temperatures. The degree of geopolymerization in the samples was measured by Fourier transform infrared spectroscopy, and microstructural analysis was performed using a scanning electron microscope. Mechanical tests were conducted to evaluate the range of compressive strength values of the prepared GP samples. A minimum compressive strength of 10.93 MPa at a maximum porosity of 37.56% was observed in a sample with an NS to SS ratio of 1:1; while a ratio of 3:1 led to the maximum compressive strength of 26.39 MPa and the minimum porosity of 24.60%. The maximum strength (26.39 MPa) was found to be more than the reported strength values for similar systems. Moreover, an improvement in strength by a factor of three has been observed relative to previously developed NS-based GPs. It may be inferred from the findings that for the given NS, with almost 90% aluminosilicate content, the extent of geopolymerization increases significantly with its increasing proportions, yielding better mechanical strength.

7.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364695

ABSTRACT

Aluminum nitride (AlN) is a semiconductor material possessing a hexagonal wurtzite crystal structure with a large band gap of 6.2 eV. AlN thin films have several potential applications and areas for study, particularly in optoelectronics. This research study focused on the preparation of Ni-doped AlN thin films by using DC and RF magnetron sputtering for optoelectronic applications. Additionally, a comparative analysis was also carried out on the as-deposited and annealed thin films. Several spectroscopy and microscopy techniques were considered for the characterization of structural (X-ray diffraction), morphological (SEM), chemical bonding (FTIR), and emission (PL spectroscopy) properties. The XRD results show that the thin films have an oriented c-axis hexagonal structure. SEM analysis validated the granular-like morphology of the deposited sample, and FTIR results confirm the presence of chemical bonding in deposited thin films. The photoluminescence (PL) emission spectra exhibit different peaks in the visible region when excited at different wavelengths. A sharp and intense photoluminescence peak was observed at 426 nm in the violet-blue region, which can be attributed to inter-band transitions due to the incorporation of Ni in AlN. Most of the peaks in the PL spectra occurred due to direct-band recombination and indirect impurity-band recombination. After annealing, the intensity of all observed peaks increases drastically due to the development of new phases, resulting in a decrease in defects and a corresponding increase in the crystallinity of the thin film. The observed structural, morphological, and photoluminescence results suggest that Ni: AlN is a promising candidate to be used in optoelectronics applications, specifically in photovoltaic devices and lasers.

8.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832401

ABSTRACT

Silica is one of the most efficient gas barrier materials, and hence is widely used as an encapsulating material for electronic devices. In general, the processing of silica is carried out at high temperatures, i.e., around 1000 °C. Recently, processing of silica has been carried out from a polymer called Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen and yields pure silica. This material has attracted many researchers and has been widely used in many applications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductor industries, and organic solar cells. In this paper, we have demonstrated the process optimization of the conversion of the PHPS into silica in terms of curing methods as well as curing the environment. Various curing methods including exposure to dry heat, damp heat, deep UV, and their combination under different environments were used to cure PHPS. FTIR analysis suggested that the quickest conversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100 °C. Curing with this method yields a water permeation rate of 10-3 g/(m2⋅day) and oxygen permeation rate of less than 10-1 cm3/(m2·day·bar). Rapid curing at low-temperature processing along with barrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and a variety of similar applications.

9.
Photochem Photobiol Sci ; 20(9): 1195-1208, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34449078

ABSTRACT

Highly colloidal upconversion nanoparticles (UCNPs) were synthesized at low temperatures by the thermal decomposition process. The structure, morphology, crystallinity, surface chemistry, and optical properties were systematically optimized and studied through various spectroscopic techniques. X-ray diffraction (XRD) patterns have shown the formation of single-phase, highly purified, well-crystalline, hexagonal LaF3 NPs, while the TEM micrographs show small, irregular sizes, spherically shaped, and aggregated polycrystalline UCNPs with an average crystalline size of about 8-15 nm. The Negative Zeta Potential value exhibits good biocompatibility of the UCNPs, which supports the idea that surface-anchored hydroxyl groups facilitate the stabilization of the NPs in aqueous media, as well as enhance biomolecules' tagging efficiency. The absorption spectrum, Zeta Potential, and hydrodynamic size that were measured in aqueous media illustrate excellent dispersibility, colloidal stability, biocompatibility, and cytotoxicity character of the UCNPs. Zeta potential and MTT assay studies illustrated high biocompatibility, it could be due to the surface-anchored hydroxyl groups. The nanoproduct demonstrates an excellent UC luminescence spectrum (i.e., prominent green emission 4S3/2 → 4I/15/2) upon irradiation by the 980-nm laser diode. TEM micrographs, further, revealed that this optically active material with aqueous sensitivities, porous crystal structure, and excellent UCNPs, could be a favorable candidate for potential photonics-based bio-related applications.

10.
Materials (Basel) ; 14(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065936

ABSTRACT

Organic photovoltaics (OPVs) die due to their interactions with environmental gases, i.e., moisture and oxygen, the latter being the most dangerous, especially under illumination, due to the fact that most of the active layers used in OPVs are extremely sensitive to oxygen. In this work we demonstrate solution-based effective barrier coatings based on composite of poly(vinyl butyral) (PVB) and mica flakes for the protection of poly (3-hexylthiophene) (P3HT)-based organic solar cells (OSCs) against photobleaching under illumination conditions. In the first step we developed a protective layer with cost effective and environmentally friendly methods and optimized its properties in terms of transparency, barrier improvement factor, and bendability. The developed protective layer maintained a high transparency in the visible region and improved oxygen and moisture barrier quality by the factor of ~7. The resultant protective layers showed ultra-flexibility, as no significant degradation in protective characteristics were observed after 10 K bending cycles. In the second step, a PVB/mica composite layer was applied on top of the P3HT film and subjected to photo-degradation. The P3HT films coated with PVB/mica composite showed improved stability under constant light irradiation and exhibited a loss of <20% of the initial optical density over the period of 150 h. Finally, optimized barrier layers were used as encapsulation for organic solar cell (OSC) devices. The lifetime results confirmed that the stability of the OSCs was extended from few hours to over 240 h in a sun test (65 °C, ambient RH%) which corresponds to an enhanced lifetime by a factor of 9 compared to devices encapsulated with pristine PVB.

11.
Materials (Basel) ; 12(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845702

ABSTRACT

Ti-6Al-4V and Mg-AZ31 were bonded together using the Transient Liquid Phase Bonding Process (TLP) after coating both surfaces with zinc. The zinc coatings were applied using the screen printing process of zinc paste. Successful bonds were obtained in a vacuum furnace at 500 °C and under a uniaxial pressure of 1 MPa using high frequency induction heat sintering furnace (HFIHS). Various bonding times were selected and all gave solid joints. The bonds were successfully achieved at 5, 10, 15, 20, 25, and 30 min. The energy dispersive spectroscopy (EDS) line scan confirmed the diffusion of Zn in both sides but with more diffusion in the Mg side. Diffusion of Mg into the joint region was detected with significant amounts at bonds made for 20 min and above, which indicate that the isothermal solidification was achieved. In addition, Ti and Al from the base alloys were diffused into the joint region. Based on microstructural analysis, the joint mechanism was attributed to the formation of solidified mixture of Mg and Zn at the joint region with a presence of diffused Ti and Al. This conclusion was also supported by structural analysis of the fractured surfaces as well as the analysis across the joint region. The fractured surfaces were analyzed and it was concluded that the fractures occurred within the joint region where ductile fractures were observed. The strength of the joint was evaluated by shear test and found that the maximum shear strength achieved was 30.5 MPa for the bond made at 20 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...